circuitpython/ports/esp32s2/common-hal/busio/SPI.c

250 lines
8.6 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/busio/SPI.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "boards/board.h"
#include "common-hal/microcontroller/Pin.h"
#include "supervisor/shared/rgb_led_status.h"
void spi_reset(void) {
}
void common_hal_busio_spi_construct(busio_spi_obj_t *self,
const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi,
const mcu_pin_obj_t * miso) {
// uint8_t sercom_index;
// uint32_t clock_pinmux = 0;
// bool mosi_none = mosi == NULL;
// bool miso_none = miso == NULL;
// uint32_t mosi_pinmux = 0;
// uint32_t miso_pinmux = 0;
// uint8_t clock_pad = 0;
// uint8_t mosi_pad = 0;
// uint8_t miso_pad = 0;
// uint8_t dopo = 255;
// if (sercom == NULL) {
// mp_raise_ValueError(translate("Invalid pins"));
// }
// // Set up SPI clocks on SERCOM.
// samd_peripherals_sercom_clock_init(sercom, sercom_index);
#if defined(MICROPY_HW_APA102_SCK) && defined(MICROPY_HW_APA102_MOSI) && !CIRCUITPY_BITBANG_APA102
// // if we're re-using the dotstar sercom, make sure it is disabled or the init will fail out
// hri_sercomspi_clear_CTRLA_ENABLE_bit(sercom);
#endif
// if (spi_m_sync_init(&self->spi_desc, sercom) != ERR_NONE) {
// mp_raise_OSError(MP_EIO);
// }
// Pads must be set after spi_m_sync_init(), which uses default values from
// the prototypical SERCOM.
// hri_sercomspi_write_CTRLA_DOPO_bf(sercom, dopo);
// hri_sercomspi_write_CTRLA_DIPO_bf(sercom, miso_pad);
// Always start at 250khz which is what SD cards need. They are sensitive to
// SPI bus noise before they are put into SPI mode.
// uint8_t baud_value = samd_peripherals_spi_baudrate_to_baud_reg_value(250000);
// if (spi_m_sync_set_baudrate(&self->spi_desc, baud_value) != ERR_NONE) {
// // spi_m_sync_set_baudrate does not check for validity, just whether the device is
// // busy or not
// mp_raise_OSError(MP_EIO);
// }
// gpio_set_pin_direction(clock->number, GPIO_DIRECTION_OUT);
// gpio_set_pin_pull_mode(clock->number, GPIO_PULL_OFF);
// gpio_set_pin_function(clock->number, clock_pinmux);
// claim_pin(clock);
// self->clock_pin = clock->number;
// if (mosi_none) {
// self->MOSI_pin = NO_PIN;
// } else {
// gpio_set_pin_direction(mosi->number, GPIO_DIRECTION_OUT);
// gpio_set_pin_pull_mode(mosi->number, GPIO_PULL_OFF);
// gpio_set_pin_function(mosi->number, mosi_pinmux);
// self->MOSI_pin = mosi->number;
// claim_pin(mosi);
// }
// if (miso_none) {
// self->MISO_pin = NO_PIN;
// } else {
// gpio_set_pin_direction(miso->number, GPIO_DIRECTION_IN);
// gpio_set_pin_pull_mode(miso->number, GPIO_PULL_OFF);
// gpio_set_pin_function(miso->number, miso_pinmux);
// self->MISO_pin = miso->number;
// claim_pin(miso);
// }
// spi_m_sync_enable(&self->spi_desc);
}
void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) {
// never_reset_sercom(self->spi_desc.dev.prvt);
never_reset_pin(self->clock_pin);
never_reset_pin(self->MOSI_pin);
never_reset_pin(self->MISO_pin);
}
bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) {
return self->clock_pin == NULL;
}
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
if (common_hal_busio_spi_deinited(self)) {
return;
}
// allow_reset_sercom(self->spi_desc.dev.prvt);
// spi_m_sync_disable(&self->spi_desc);
// spi_m_sync_deinit(&self->spi_desc);
reset_pin(self->clock_pin);
reset_pin(self->MOSI_pin);
reset_pin(self->MISO_pin);
self->clock_pin = NULL;
}
bool common_hal_busio_spi_configure(busio_spi_obj_t *self,
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
// If the settings are already what we want then don't reset them.
// if (hri_sercomspi_get_CTRLA_CPHA_bit(hw) == phase &&
// hri_sercomspi_get_CTRLA_CPOL_bit(hw) == polarity &&
// hri_sercomspi_read_CTRLB_CHSIZE_bf(hw) == ((uint32_t)bits - 8) &&
// hri_sercomspi_read_BAUD_BAUD_bf(hw) == baud_reg_value) {
// return true;
// }
// Disable, set values (most or all are enable-protected), and re-enable.
// spi_m_sync_disable(&self->spi_desc);
// hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_MASK);
// hri_sercomspi_write_CTRLA_CPHA_bit(hw, phase);
// hri_sercomspi_write_CTRLA_CPOL_bit(hw, polarity);
// hri_sercomspi_write_CTRLB_CHSIZE_bf(hw, bits - 8);
// hri_sercomspi_write_BAUD_BAUD_bf(hw, baud_reg_value);
// hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_MASK);
// spi_m_sync_enable(&self->spi_desc);
// hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_MASK);
return true;
}
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
bool grabbed_lock = false;
// CRITICAL_SECTION_ENTER()
if (!self->has_lock) {
grabbed_lock = true;
self->has_lock = true;
}
// CRITICAL_SECTION_LEAVE();
return grabbed_lock;
}
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
self->has_lock = false;
}
bool common_hal_busio_spi_write(busio_spi_obj_t *self,
const uint8_t *data, size_t len) {
if (len == 0) {
return true;
}
// int32_t status;
if (len >= 16) {
// status = sercom_dma_write(self->spi_desc.dev.prvt, data, len);
} else {
// struct io_descriptor *spi_io;
// spi_m_sync_get_io_descriptor(&self->spi_desc, &spi_io);
// status = spi_io->write(spi_io, data, len);
}
return false; // Status is number of chars read or an error code < 0.
}
bool common_hal_busio_spi_read(busio_spi_obj_t *self,
uint8_t *data, size_t len, uint8_t write_value) {
if (len == 0) {
return true;
}
// int32_t status;
if (len >= 16) {
// status = sercom_dma_read(self->spi_desc.dev.prvt, data, len, write_value);
} else {
// self->spi_desc.dev.dummy_byte = write_value;
// struct io_descriptor *spi_io;
// spi_m_sync_get_io_descriptor(&self->spi_desc, &spi_io);
// status = spi_io->read(spi_io, data, len);
}
return false; // Status is number of chars read or an error code < 0.
}
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) {
if (len == 0) {
return true;
}
// int32_t status;
if (len >= 16) {
// status = sercom_dma_transfer(self->spi_desc.dev.prvt, data_out, data_in, len);
} else {
// struct spi_xfer xfer;
// xfer.txbuf = data_out;
// xfer.rxbuf = data_in;
// xfer.size = len;
// status = spi_m_sync_transfer(&self->spi_desc, &xfer);
}
return false; // Status is number of chars read or an error code < 0.
}
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) {
// return samd_peripherals_spi_baud_reg_value_to_baudrate(hri_sercomspi_read_BAUD_reg(self->spi_desc.dev.prvt));
return 0;
}
uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t* self) {
// void * hw = self->spi_desc.dev.prvt;
// return hri_sercomspi_get_CTRLA_CPHA_bit(hw);
return 0;
}
uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t* self) {
// void * hw = self->spi_desc.dev.prvt;
// return hri_sercomspi_get_CTRLA_CPOL_bit(hw);
return 0;
}