/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Scott Shawcroft * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/busio/SPI.h" #include "py/mperrno.h" #include "py/runtime.h" #include "boards/board.h" #include "common-hal/microcontroller/Pin.h" #include "supervisor/shared/rgb_led_status.h" void spi_reset(void) { } void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi, const mcu_pin_obj_t * miso) { // uint8_t sercom_index; // uint32_t clock_pinmux = 0; // bool mosi_none = mosi == NULL; // bool miso_none = miso == NULL; // uint32_t mosi_pinmux = 0; // uint32_t miso_pinmux = 0; // uint8_t clock_pad = 0; // uint8_t mosi_pad = 0; // uint8_t miso_pad = 0; // uint8_t dopo = 255; // if (sercom == NULL) { // mp_raise_ValueError(translate("Invalid pins")); // } // // Set up SPI clocks on SERCOM. // samd_peripherals_sercom_clock_init(sercom, sercom_index); #if defined(MICROPY_HW_APA102_SCK) && defined(MICROPY_HW_APA102_MOSI) && !CIRCUITPY_BITBANG_APA102 // // if we're re-using the dotstar sercom, make sure it is disabled or the init will fail out // hri_sercomspi_clear_CTRLA_ENABLE_bit(sercom); #endif // if (spi_m_sync_init(&self->spi_desc, sercom) != ERR_NONE) { // mp_raise_OSError(MP_EIO); // } // Pads must be set after spi_m_sync_init(), which uses default values from // the prototypical SERCOM. // hri_sercomspi_write_CTRLA_DOPO_bf(sercom, dopo); // hri_sercomspi_write_CTRLA_DIPO_bf(sercom, miso_pad); // Always start at 250khz which is what SD cards need. They are sensitive to // SPI bus noise before they are put into SPI mode. // uint8_t baud_value = samd_peripherals_spi_baudrate_to_baud_reg_value(250000); // if (spi_m_sync_set_baudrate(&self->spi_desc, baud_value) != ERR_NONE) { // // spi_m_sync_set_baudrate does not check for validity, just whether the device is // // busy or not // mp_raise_OSError(MP_EIO); // } // gpio_set_pin_direction(clock->number, GPIO_DIRECTION_OUT); // gpio_set_pin_pull_mode(clock->number, GPIO_PULL_OFF); // gpio_set_pin_function(clock->number, clock_pinmux); // claim_pin(clock); // self->clock_pin = clock->number; // if (mosi_none) { // self->MOSI_pin = NO_PIN; // } else { // gpio_set_pin_direction(mosi->number, GPIO_DIRECTION_OUT); // gpio_set_pin_pull_mode(mosi->number, GPIO_PULL_OFF); // gpio_set_pin_function(mosi->number, mosi_pinmux); // self->MOSI_pin = mosi->number; // claim_pin(mosi); // } // if (miso_none) { // self->MISO_pin = NO_PIN; // } else { // gpio_set_pin_direction(miso->number, GPIO_DIRECTION_IN); // gpio_set_pin_pull_mode(miso->number, GPIO_PULL_OFF); // gpio_set_pin_function(miso->number, miso_pinmux); // self->MISO_pin = miso->number; // claim_pin(miso); // } // spi_m_sync_enable(&self->spi_desc); } void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) { // never_reset_sercom(self->spi_desc.dev.prvt); never_reset_pin(self->clock_pin); never_reset_pin(self->MOSI_pin); never_reset_pin(self->MISO_pin); } bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) { return self->clock_pin == NULL; } void common_hal_busio_spi_deinit(busio_spi_obj_t *self) { if (common_hal_busio_spi_deinited(self)) { return; } // allow_reset_sercom(self->spi_desc.dev.prvt); // spi_m_sync_disable(&self->spi_desc); // spi_m_sync_deinit(&self->spi_desc); reset_pin(self->clock_pin); reset_pin(self->MOSI_pin); reset_pin(self->MISO_pin); self->clock_pin = NULL; } bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) { // If the settings are already what we want then don't reset them. // if (hri_sercomspi_get_CTRLA_CPHA_bit(hw) == phase && // hri_sercomspi_get_CTRLA_CPOL_bit(hw) == polarity && // hri_sercomspi_read_CTRLB_CHSIZE_bf(hw) == ((uint32_t)bits - 8) && // hri_sercomspi_read_BAUD_BAUD_bf(hw) == baud_reg_value) { // return true; // } // Disable, set values (most or all are enable-protected), and re-enable. // spi_m_sync_disable(&self->spi_desc); // hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_MASK); // hri_sercomspi_write_CTRLA_CPHA_bit(hw, phase); // hri_sercomspi_write_CTRLA_CPOL_bit(hw, polarity); // hri_sercomspi_write_CTRLB_CHSIZE_bf(hw, bits - 8); // hri_sercomspi_write_BAUD_BAUD_bf(hw, baud_reg_value); // hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_MASK); // spi_m_sync_enable(&self->spi_desc); // hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_MASK); return true; } bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) { bool grabbed_lock = false; // CRITICAL_SECTION_ENTER() if (!self->has_lock) { grabbed_lock = true; self->has_lock = true; } // CRITICAL_SECTION_LEAVE(); return grabbed_lock; } bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) { return self->has_lock; } void common_hal_busio_spi_unlock(busio_spi_obj_t *self) { self->has_lock = false; } bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size_t len) { if (len == 0) { return true; } // int32_t status; if (len >= 16) { // status = sercom_dma_write(self->spi_desc.dev.prvt, data, len); } else { // struct io_descriptor *spi_io; // spi_m_sync_get_io_descriptor(&self->spi_desc, &spi_io); // status = spi_io->write(spi_io, data, len); } return false; // Status is number of chars read or an error code < 0. } bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len, uint8_t write_value) { if (len == 0) { return true; } // int32_t status; if (len >= 16) { // status = sercom_dma_read(self->spi_desc.dev.prvt, data, len, write_value); } else { // self->spi_desc.dev.dummy_byte = write_value; // struct io_descriptor *spi_io; // spi_m_sync_get_io_descriptor(&self->spi_desc, &spi_io); // status = spi_io->read(spi_io, data, len); } return false; // Status is number of chars read or an error code < 0. } bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) { if (len == 0) { return true; } // int32_t status; if (len >= 16) { // status = sercom_dma_transfer(self->spi_desc.dev.prvt, data_out, data_in, len); } else { // struct spi_xfer xfer; // xfer.txbuf = data_out; // xfer.rxbuf = data_in; // xfer.size = len; // status = spi_m_sync_transfer(&self->spi_desc, &xfer); } return false; // Status is number of chars read or an error code < 0. } uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) { // return samd_peripherals_spi_baud_reg_value_to_baudrate(hri_sercomspi_read_BAUD_reg(self->spi_desc.dev.prvt)); return 0; } uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t* self) { // void * hw = self->spi_desc.dev.prvt; // return hri_sercomspi_get_CTRLA_CPHA_bit(hw); return 0; } uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t* self) { // void * hw = self->spi_desc.dev.prvt; // return hri_sercomspi_get_CTRLA_CPOL_bit(hw); return 0; }