circuitpython/py/makeqstrdata.py

787 lines
23 KiB
Python
Raw Normal View History

"""
Process raw qstr file and output qstr data with length, hash and data bytes.
This script works with Python 2.7, 3.3 and 3.4.
For documentation about the format of compressed translated strings, see
supervisor/shared/translate.h
"""
from __future__ import print_function
import bisect
import re
2014-03-08 15:03:25 +00:00
import sys
2018-07-31 16:53:54 -07:00
import collections
import gettext
2018-08-16 00:27:01 -07:00
import os.path
2018-07-31 16:53:54 -07:00
2021-03-15 19:27:36 +05:30
if hasattr(sys.stdout, "reconfigure"):
sys.stdout.reconfigure(encoding="utf-8")
sys.stderr.reconfigure(errors="backslashreplace")
2018-08-16 00:27:01 -07:00
py = os.path.dirname(sys.argv[0])
top = os.path.dirname(py)
sys.path.append(os.path.join(top, "tools/huffman"))
import huffman
# Python 2/3 compatibility:
# - iterating through bytes is different
# - codepoint2name lives in a different module
import platform
2021-03-15 19:27:36 +05:30
if platform.python_version_tuple()[0] == "2":
bytes_cons = lambda val, enc=None: bytearray(val)
from htmlentitydefs import codepoint2name
2021-03-15 19:27:36 +05:30
elif platform.python_version_tuple()[0] == "3":
bytes_cons = bytes
from html.entities import codepoint2name
# end compatibility code
2021-03-15 19:27:36 +05:30
codepoint2name[ord("-")] = "hyphen"
# add some custom names to map characters that aren't in HTML
2021-03-15 19:27:36 +05:30
codepoint2name[ord(" ")] = "space"
codepoint2name[ord("'")] = "squot"
codepoint2name[ord(",")] = "comma"
codepoint2name[ord(".")] = "dot"
codepoint2name[ord(":")] = "colon"
codepoint2name[ord(";")] = "semicolon"
codepoint2name[ord("/")] = "slash"
codepoint2name[ord("%")] = "percent"
codepoint2name[ord("#")] = "hash"
codepoint2name[ord("(")] = "paren_open"
codepoint2name[ord(")")] = "paren_close"
codepoint2name[ord("[")] = "bracket_open"
codepoint2name[ord("]")] = "bracket_close"
codepoint2name[ord("{")] = "brace_open"
codepoint2name[ord("}")] = "brace_close"
codepoint2name[ord("*")] = "star"
codepoint2name[ord("!")] = "bang"
codepoint2name[ord("\\")] = "backslash"
codepoint2name[ord("+")] = "plus"
codepoint2name[ord("$")] = "dollar"
codepoint2name[ord("=")] = "equals"
codepoint2name[ord("?")] = "question"
codepoint2name[ord("@")] = "at_sign"
codepoint2name[ord("^")] = "caret"
codepoint2name[ord("|")] = "pipe"
codepoint2name[ord("~")] = "tilde"
2018-08-09 15:58:45 -07:00
C_ESCAPES = {
"\a": "\\a",
"\b": "\\b",
"\f": "\\f",
"\n": "\\n",
2018-08-09 15:58:45 -07:00
"\r": "\\r",
"\t": "\\t",
"\v": "\\v",
2021-03-15 19:27:36 +05:30
"'": "\\'",
'"': '\\"',
2018-08-09 15:58:45 -07:00
}
# static qstrs, should be sorted
# These are qstrs that are always included and always have the same number. It allows mpy files to omit them.
static_qstr_list = [
"",
"__dir__", # Put __dir__ after empty qstr for builtin dir() to work
"\n",
" ",
"*",
"/",
"<module>",
"_",
"__call__",
"__class__",
"__delitem__",
"__enter__",
"__exit__",
"__getattr__",
"__getitem__",
"__hash__",
"__init__",
"__int__",
"__iter__",
"__len__",
"__main__",
"__module__",
"__name__",
"__new__",
"__next__",
"__qualname__",
"__repr__",
"__setitem__",
"__str__",
"ArithmeticError",
"AssertionError",
"AttributeError",
"BaseException",
"EOFError",
"Ellipsis",
"Exception",
"GeneratorExit",
"ImportError",
"IndentationError",
"IndexError",
"KeyError",
"KeyboardInterrupt",
"LookupError",
"MemoryError",
"NameError",
"NoneType",
"NotImplementedError",
"OSError",
"OverflowError",
"RuntimeError",
"StopIteration",
"SyntaxError",
"SystemExit",
"TypeError",
"ValueError",
"ZeroDivisionError",
"abs",
"all",
"any",
"append",
"args",
"bool",
"builtins",
"bytearray",
"bytecode",
"bytes",
"callable",
"chr",
"classmethod",
"clear",
"close",
"const",
"copy",
"count",
"dict",
"dir",
"divmod",
"end",
"endswith",
"eval",
"exec",
"extend",
"find",
"format",
"from_bytes",
"get",
"getattr",
"globals",
"hasattr",
"hash",
"id",
"index",
"insert",
"int",
"isalpha",
"isdigit",
"isinstance",
"islower",
"isspace",
"issubclass",
"isupper",
"items",
"iter",
"join",
"key",
"keys",
"len",
"list",
"little",
"locals",
"lower",
"lstrip",
"main",
"map",
"micropython",
"next",
"object",
"open",
"ord",
"pop",
"popitem",
"pow",
"print",
"range",
"read",
"readinto",
"readline",
"remove",
"replace",
"repr",
"reverse",
"rfind",
"rindex",
"round",
"rsplit",
"rstrip",
"self",
"send",
"sep",
"set",
"setattr",
"setdefault",
"sort",
"sorted",
"split",
"start",
"startswith",
"staticmethod",
"step",
"stop",
"str",
"strip",
"sum",
"super",
"throw",
"to_bytes",
"tuple",
"type",
"update",
"upper",
"utf-8",
"value",
"values",
"write",
"zip",
]
# this must match the equivalent function in qstr.c
def compute_hash(qstr, bytes_hash):
hash = 5381
for b in qstr:
hash = (hash * 33) ^ b
# Make sure that valid hash is never zero, zero means "hash not computed"
return (hash & ((1 << (8 * bytes_hash)) - 1)) or 1
2021-03-15 19:27:36 +05:30
2018-07-31 16:53:54 -07:00
def translate(translation_file, i18ns):
with open(translation_file, "rb") as f:
table = gettext.GNUTranslations(f)
2018-08-09 15:58:45 -07:00
translations = []
for original in i18ns:
unescaped = original
for s in C_ESCAPES:
unescaped = unescaped.replace(C_ESCAPES[s], s)
translation = table.gettext(unescaped)
# Add in carriage returns to work in terminals
translation = translation.replace("\n", "\r\n")
translations.append((original, translation))
2018-08-09 15:58:45 -07:00
return translations
2018-07-31 16:53:54 -07:00
2021-03-15 19:27:36 +05:30
class TextSplitter:
def __init__(self, words):
words = sorted(words, key=lambda x: len(x), reverse=True)
self.words = set(words)
if words:
pat = "|".join(re.escape(w) for w in words) + "|."
else:
pat = "."
self.pat = re.compile(pat, flags=re.DOTALL)
def iter_words(self, text):
s = []
words = self.words
for m in self.pat.finditer(text):
t = m.group(0)
if t in words:
if s:
yield (False, "".join(s))
s = []
yield (True, t)
else:
s.append(t)
if s:
yield (False, "".join(s))
def iter(self, text):
for m in self.pat.finditer(text):
yield m.group(0)
2021-03-15 19:27:36 +05:30
def iter_substrings(s, minlen, maxlen):
len_s = len(s)
maxlen = min(len_s, maxlen)
for n in range(minlen, maxlen + 1):
for begin in range(0, len_s - n + 1):
yield s[begin : begin + n]
2021-03-15 19:27:36 +05:30
def compute_huffman_coding(translations, compression_filename):
texts = [t[1] for t in translations]
words = []
start_unused = 0x80
2021-03-15 19:27:36 +05:30
end_unused = 0xFF
max_ord = 0
for text in texts:
for c in text:
ord_c = ord(c)
max_ord = max(ord_c, max_ord)
2021-03-15 19:27:36 +05:30
if 0x80 <= ord_c < 0xFF:
end_unused = min(ord_c, end_unused)
max_words = end_unused - 0x80
bits_per_codepoint = 16 if max_ord > 255 else 8
values_type = "uint16_t" if max_ord > 255 else "uint8_t"
while len(words) < max_words:
# Until the dictionary is filled to capacity, use a heuristic to find
# the best "word" (2- to 11-gram) to add to it.
#
# The TextSplitter allows us to avoid considering parts of the text
# that are already covered by a previously chosen word, for example
# if "the" is in words then not only will "the" not be considered
# again, neither will "there" or "wither", since they have "the"
# as substrings.
extractor = TextSplitter(words)
counter = collections.Counter()
for t in texts:
for atom in extractor.iter(t):
counter[atom] += 1
cb = huffman.codebook(counter.items())
lengths = sorted(dict((v, len(cb[k])) for k, v in counter.items()).items())
def bit_length(s):
return sum(len(cb[c]) for c in s)
def est_len(occ):
idx = bisect.bisect_left(lengths, (occ, 0))
return lengths[idx][1] + 1
# The cost of adding a dictionary word is just its storage size
# while its savings is close to the difference between the original
# huffman bit-length of the string and the estimated bit-length
# of the dictionary word, times the number of times the word appears.
#
# The savings is not strictly accurate because including a word into
# the Huffman tree bumps up the encoding lengths of all words in the
# same subtree. In the extreme case when the new word is so frequent
# that it gets a one-bit encoding, all other words will cost an extra
# bit each. This is empirically modeled by the constant factor added to
# cost, but the specific value used isn't "proven" to be correct.
#
# Another source of inaccuracy is that compressed strings end up
# on byte boundaries, not bit boundaries, so saving 1 bit somewhere
# might not save a byte.
#
# In fact, when this change was first made, some translations (luckily,
# ones on boards not at all close to full) wasted up to 40 bytes,
# while the most constrained boards typically gained 100 bytes or
# more.
#
# The difference between the two is the estimated net savings, in bits.
def est_net_savings(s, occ):
savings = occ * (bit_length(s) - est_len(occ))
cost = len(s) * bits_per_codepoint + 24
return savings - cost
counter = collections.Counter()
for t in texts:
for (found, word) in extractor.iter_words(t):
if not found:
for substr in iter_substrings(word, minlen=2, maxlen=11):
counter[substr] += 1
# Score the candidates we found. This is a semi-empirical formula that
# attempts to model the number of bits saved as closely as possible.
#
# It attempts to compute the codeword lengths of the original word
# to the codeword length the dictionary entry would get, times
# the number of occurrences, less the ovehead of the entries in the
# words[] array.
scores = sorted(
((s, -est_net_savings(s, occ)) for (s, occ) in counter.items()), key=lambda x: x[1]
)
# Pick the one with the highest score. The score must be negative.
if not scores or scores[0][-1] >= 0:
break
word = scores[0][0]
words.append(word)
words.sort(key=len)
extractor = TextSplitter(words)
counter = collections.Counter()
for t in texts:
for atom in extractor.iter(t):
counter[atom] += 1
cb = huffman.codebook(counter.items())
word_start = start_unused
word_end = word_start + len(words) - 1
print("// # words", len(words))
print("// words", words)
add bigram compression to makeqstrdata Compress common unicode bigrams by making code points in the range 0x80 - 0xbf (inclusive) represent them. Then, they can be greedily encoded and the substituted code points handled by the existing Huffman compression. Normally code points in the range 0x80-0xbf are not used in Unicode, so we stake our own claim. Using the more arguably correct "Private Use Area" (PUA) would mean that for scripts that only use code points under 256 we would use more memory for the "values" table. bigram means "two letters", and is also sometimes called a "digram". It's nothing to do with "big RAM". For our purposes, a bigram represents two successive unicode code points, so for instance in our build on trinket m0 for english the most frequent are: ['t ', 'e ', 'in', 'd ', ...]. The bigrams are selected based on frequency in the corpus, but the selection is not necessarily optimal, for these reasons I can think of: * Suppose the corpus was just "tea" repeated 100 times. The top bigrams would be "te", and "ea". However, overlap, "te" could never be used. Thus, some bigrams might actually waste space * I _assume_ this has to be why e.g., bigram 0x86 "s " is more frequent than bigram 0x85 " a" in English for Trinket M0, because sequences like "can't add" would get the "t " digram and then be unable to use the " a" digram. * And generally, if a bigram is frequent then so are its constituents. Say that "i" and "n" both encode to just 5 or 6 bits, then the huffman code for "in" had better compress to 10 or fewer bits or it's a net loss! * I checked though! "i" is 5 bits, "n" is 6 bits (lucky guess) but the bigram 0x83 also just 6 bits, so this one is a win of 5 bits for every "it" minus overhead. Yay, this round goes to team compression. * On the other hand, the least frequent bigram 0x9d " n" is 10 bits long and its constituent code points are 4+6 bits so there's no savings, but there is the cost of the table entry. * and somehow 0x9f 'an' is never used at all! With or without accounting for overlaps, there is some optimum number of bigrams. Adding one more bigram uses at least 2 bytes (for the entry in the bigram table; 4 bytes if code points >255 are in the source text) and also needs a slot in the Huffman dictionary, so adding bigrams beyond the optimim number makes compression worse again. If it's an improvement, the fact that it's not guaranteed optimal doesn't seem to matter too much. It just leaves a little more fruit for the next sweep to pick up. Perhaps try adding the most frequent bigram not yet present, until it doesn't improve compression overall. Right now, de_DE is again the "fullest" build on trinket_m0. (It's reclaimed that spot from the ja translation somehow) This change saves 104 bytes there, increasing free space about 6.8%. In the larger (but not critically full) pyportal build it saves 324 bytes. The specific number of bigrams used (32) was chosen as it is the max number that fit within the 0x80..0xbf range. Larger tables would require the use of 16 bit code points in the de_DE build, losing savings overall. (Side note: The most frequent letters in English have been said to be: ETA OIN SHRDLU; but we have UAC EIL MOPRST in our corpus)
2020-09-01 17:12:22 -05:00
values = []
length_count = {}
renumbered = 0
last_length = None
canonical = {}
for atom, code in sorted(cb.items(), key=lambda x: (len(x[1]), x[0])):
values.append(atom)
length = len(code)
if length not in length_count:
length_count[length] = 0
length_count[length] += 1
if last_length:
2021-03-15 19:27:36 +05:30
renumbered <<= length - last_length
canonical[atom] = "{0:0{width}b}".format(renumbered, width=length)
# print(f"atom={repr(atom)} code={code}", file=sys.stderr)
if len(atom) > 1:
o = words.index(atom) + 0x80
s = "".join(C_ESCAPES.get(ch1, ch1) for ch1 in atom)
else:
s = C_ESCAPES.get(atom, atom)
o = ord(atom)
print("//", o, s, counter[atom], canonical[atom], renumbered)
renumbered += 1
last_length = length
lengths = bytearray()
print("// length count", length_count)
for i in range(1, max(length_count) + 2):
lengths.append(length_count.get(i, 0))
print("// values", values, "lengths", len(lengths), lengths)
print("//", values, lengths)
values = [(atom if len(atom) == 1 else chr(0x80 + words.index(atom))) for atom in values]
max_translation_encoded_length = max(
2021-03-15 19:27:36 +05:30
len(translation.encode("utf-8")) for (original, translation) in translations
)
maxlen = len(words[-1])
minlen = len(words[0])
wlencount = [len([None for w in words if len(w) == l]) for l in range(minlen, maxlen + 1)]
with open(compression_filename, "w") as f:
f.write("typedef {} mchar_t;".format(values_type))
f.write("const uint8_t lengths[] = {{ {} }};\n".format(", ".join(map(str, lengths))))
2021-03-15 19:27:36 +05:30
f.write(
"const mchar_t values[] = {{ {} }};\n".format(", ".join(str(ord(u)) for u in values))
2021-03-15 19:27:36 +05:30
)
f.write(
"#define compress_max_length_bits ({})\n".format(
max_translation_encoded_length.bit_length()
)
)
f.write(
"const mchar_t words[] = {{ {} }};\n".format(
", ".join(str(ord(c)) for w in words for c in w)
2021-03-15 19:27:36 +05:30
)
)
f.write(
"const uint8_t wlencount[] = {{ {} }};\n".format(", ".join(str(p) for p in wlencount))
)
f.write("#define word_start {}\n".format(word_start))
f.write("#define word_end {}\n".format(word_end))
f.write("#define minlen {}\n".format(minlen))
f.write("#define maxlen {}\n".format(maxlen))
return (values, lengths, words, canonical, extractor)
2021-03-15 19:27:36 +05:30
def decompress(encoding_table, encoded, encoded_length_bits):
(values, lengths, words, _, _) = encoding_table
dec = []
this_byte = 0
this_bit = 7
b = encoded[this_byte]
bits = 0
for i in range(encoded_length_bits):
bits <<= 1
if 0x80 & b:
bits |= 1
b <<= 1
if this_bit == 0:
this_bit = 7
this_byte += 1
if this_byte < len(encoded):
b = encoded[this_byte]
else:
this_bit -= 1
length = bits
i = 0
while i < length:
bits = 0
bit_length = 0
max_code = lengths[0]
searched_length = lengths[0]
while True:
bits <<= 1
if 0x80 & b:
bits |= 1
b <<= 1
bit_length += 1
if this_bit == 0:
this_bit = 7
this_byte += 1
if this_byte < len(encoded):
b = encoded[this_byte]
else:
this_bit -= 1
if max_code > 0 and bits < max_code:
2021-03-15 19:27:36 +05:30
# print('{0:0{width}b}'.format(bits, width=bit_length))
break
max_code = (max_code << 1) + lengths[bit_length]
searched_length += lengths[bit_length]
v = values[searched_length + bits - max_code]
if v >= chr(0x80) and v < chr(0x80 + len(words)):
v = words[ord(v) - 0x80]
2021-03-15 19:27:36 +05:30
i += len(v.encode("utf-8"))
dec.append(v)
2021-03-15 19:27:36 +05:30
return "".join(dec)
def compress(encoding_table, decompressed, encoded_length_bits, len_translation_encoded):
if not isinstance(decompressed, str):
raise TypeError()
(_, _, _, canonical, extractor) = encoding_table
enc = bytearray(len(decompressed) * 3)
current_bit = 7
current_byte = 0
bits = encoded_length_bits + 1
for i in range(bits - 1, 0, -1):
if len_translation_encoded & (1 << (i - 1)):
enc[current_byte] |= 1 << current_bit
if current_bit == 0:
current_bit = 7
current_byte += 1
else:
current_bit -= 1
for atom in extractor.iter(decompressed):
for b in canonical[atom]:
if b == "1":
enc[current_byte] |= 1 << current_bit
if current_bit == 0:
current_bit = 7
current_byte += 1
else:
current_bit -= 1
if current_bit != 7:
current_byte += 1
return enc[:current_byte]
2021-03-15 19:27:36 +05:30
def qstr_escape(qst):
def esc_char(m):
c = ord(m.group(0))
try:
name = codepoint2name[c]
except KeyError:
2021-03-15 19:27:36 +05:30
name = "0x%02x" % c
return "_" + name + "_"
return re.sub(r"[^A-Za-z0-9_]", esc_char, qst)
def parse_input_headers(infiles):
qcfgs = {}
qstrs = {}
2018-07-31 16:53:54 -07:00
i18ns = set()
# add static qstrs
for qstr in static_qstr_list:
# work out the corresponding qstr name
ident = qstr_escape(qstr)
# don't add duplicates
assert ident not in qstrs
# add the qstr to the list, with order number to retain original order in file
order = len(qstrs) - 300000
qstrs[ident] = (order, ident, qstr)
# read the qstrs in from the input files
for infile in infiles:
2021-03-15 19:27:36 +05:30
with open(infile, "rt") as f:
for line in f:
line = line.strip()
# is this a config line?
2021-03-15 19:27:36 +05:30
match = re.match(r"^QCFG\((.+), (.+)\)", line)
if match:
value = match.group(2)
2021-03-15 19:27:36 +05:30
if value[0] == "(" and value[-1] == ")":
# strip parenthesis from config value
value = value[1:-1]
qcfgs[match.group(1)] = value
continue
2018-07-31 16:53:54 -07:00
match = re.match(r'^TRANSLATE\("(.*)"\)$', line)
if match:
i18ns.add(match.group(1))
continue
# is this a QSTR line?
2021-03-15 19:27:36 +05:30
match = re.match(r"^Q\((.*)\)$", line)
if not match:
continue
# get the qstr value
qstr = match.group(1)
# special cases to specify control characters
2021-03-15 19:27:36 +05:30
if qstr == "\\n":
qstr = "\n"
elif qstr == "\\r\\n":
qstr = "\r\n"
# work out the corresponding qstr name
ident = qstr_escape(qstr)
# don't add duplicates
if ident in qstrs:
continue
# add the qstr to the list, with order number to retain original order in file
order = len(qstrs)
# but put special method names like __add__ at the top of list, so
# that their id's fit into a byte
if ident == "":
# Sort empty qstr above all still
order = -200000
elif ident == "__dir__":
# Put __dir__ after empty qstr for builtin dir() to work
order = -190000
elif ident.startswith("__"):
order -= 100000
qstrs[ident] = (order, ident, qstr)
2018-07-31 16:53:54 -07:00
if not qcfgs and qstrs:
sys.stderr.write("ERROR: Empty preprocessor output - check for errors above\n")
sys.exit(1)
2018-07-31 16:53:54 -07:00
return qcfgs, qstrs, i18ns
def escape_bytes(qstr):
if all(32 <= ord(c) <= 126 and c != "\\" and c != '"' for c in qstr):
# qstr is all printable ASCII so render it as-is (for easier debugging)
return qstr
else:
# qstr contains non-printable codes so render entire thing as hex pairs
qbytes = bytes_cons(qstr, "utf8")
return "".join(("\\x%02x" % b) for b in qbytes)
2021-03-15 19:27:36 +05:30
def make_bytes(cfg_bytes_len, cfg_bytes_hash, qstr):
2021-03-15 19:27:36 +05:30
qbytes = bytes_cons(qstr, "utf8")
qlen = len(qbytes)
qhash = compute_hash(qbytes, cfg_bytes_hash)
if qlen >= (1 << (8 * cfg_bytes_len)):
2021-03-15 19:27:36 +05:30
print("qstr is too long:", qstr)
assert False
qdata = escape_bytes(qstr)
return '%d, %d, "%s"' % (qhash, qlen, qdata)
2021-03-15 19:27:36 +05:30
def print_qstr_data(encoding_table, qcfgs, qstrs, i18ns):
# get config variables
2021-03-15 19:27:36 +05:30
cfg_bytes_len = int(qcfgs["BYTES_IN_LEN"])
cfg_bytes_hash = int(qcfgs["BYTES_IN_HASH"])
2015-07-31 14:57:36 +03:00
# print out the starter of the generated C header file
2021-03-15 19:27:36 +05:30
print("// This file was automatically generated by makeqstrdata.py")
print("")
# add NULL qstr with no hash or data
print('QDEF(MP_QSTRnull, 0, 0, "")')
2018-07-31 16:53:54 -07:00
total_qstr_size = 0
total_qstr_compressed_size = 0
# go through each qstr and print it out
for order, ident, qstr in sorted(qstrs.values(), key=lambda x: x[0]):
qbytes = make_bytes(cfg_bytes_len, cfg_bytes_hash, qstr)
2021-03-15 19:27:36 +05:30
print("QDEF(MP_QSTR_%s, %s)" % (ident, qbytes))
2018-07-31 16:53:54 -07:00
total_qstr_size += len(qstr)
total_text_size = 0
total_text_compressed_size = 0
2021-03-15 19:27:36 +05:30
max_translation_encoded_length = max(
len(translation.encode("utf-8")) for original, translation in i18ns
)
encoded_length_bits = max_translation_encoded_length.bit_length()
2018-07-31 16:53:54 -07:00
for original, translation in i18ns:
translation_encoded = translation.encode("utf-8")
2021-03-15 19:27:36 +05:30
compressed = compress(
encoding_table, translation, encoded_length_bits, len(translation_encoded)
)
total_text_compressed_size += len(compressed)
decompressed = decompress(encoding_table, compressed, encoded_length_bits)
assert decompressed == translation
for c in C_ESCAPES:
decompressed = decompressed.replace(c, C_ESCAPES[c])
2021-03-15 19:27:36 +05:30
print(
'TRANSLATION("{}", {}) // {}'.format(
original, ", ".join(["{:d}".format(x) for x in compressed]), decompressed
)
)
total_text_size += len(translation.encode("utf-8"))
2018-07-31 16:53:54 -07:00
print()
print("// {} bytes worth of qstr".format(total_qstr_size))
print("// {} bytes worth of translations".format(total_text_size))
print("// {} bytes worth of translations compressed".format(total_text_compressed_size))
print("// {} bytes saved".format(total_text_size - total_text_compressed_size))
2018-07-31 16:53:54 -07:00
2021-03-15 19:27:36 +05:30
2018-07-31 16:53:54 -07:00
def print_qstr_enums(qstrs):
# print out the starter of the generated C header file
2021-03-15 19:27:36 +05:30
print("// This file was automatically generated by makeqstrdata.py")
print("")
2018-07-31 16:53:54 -07:00
# add NULL qstr with no hash or data
print("QENUM(MP_QSTRnull)")
2018-07-31 16:53:54 -07:00
# go through each qstr and print it out
for order, ident, qstr in sorted(qstrs.values(), key=lambda x: x[0]):
2021-03-15 19:27:36 +05:30
print("QENUM(MP_QSTR_%s)" % (ident,))
if __name__ == "__main__":
2018-07-31 16:53:54 -07:00
import argparse
2021-03-15 19:27:36 +05:30
parser = argparse.ArgumentParser(
description="Process QSTR definitions into headers for compilation"
)
parser.add_argument(
"infiles", metavar="N", type=str, nargs="+", help="an integer for the accumulator"
)
parser.add_argument(
"--translation", default=None, type=str, help="translations for i18n() items"
)
parser.add_argument(
"--compression_filename", default=None, type=str, help="header for compression info"
)
2018-07-31 16:53:54 -07:00
args = parser.parse_args()
qcfgs, qstrs, i18ns = parse_input_headers(args.infiles)
if args.translation:
i18ns = sorted(i18ns)
2018-07-31 16:53:54 -07:00
translations = translate(args.translation, i18ns)
encoding_table = compute_huffman_coding(translations, args.compression_filename)
print_qstr_data(encoding_table, qcfgs, qstrs, translations)
2018-07-31 16:53:54 -07:00
else:
print_qstr_enums(qstrs)