268 lines
9.3 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file contains all of the port specific HAL functions for the machine
// module.
#include "shared-bindings/modules/machine.h"
#include "py/nlr.h"
#include "asf/sam0/drivers/sercom/i2c/i2c_master.h"
// Number of times to try to send packet if failed.
#define TIMEOUT 1
void mp_hal_i2c_construct(machine_i2c_obj_t *self, const pin_obj_t* scl,
const pin_obj_t* sda, uint32_t freq) {
struct i2c_master_config config_i2c_master;
i2c_master_get_config_defaults(&config_i2c_master);
// Struct takes the argument in Khz not Hz.
config_i2c_master.baud_rate = freq / 1000;
// TODO(tannewt): Utilize the secondary sercom if the first is already being
// used.
if (sda->primary_sercom.sercom == 0 || sda->primary_sercom.pad != 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError,
"SDA pin must be on SERCOM pad 0"));
}
if (scl->primary_sercom.sercom == 0 || scl->primary_sercom.pad != 1) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError,
"SCL pin must be on SERCOM pad 1"));
}
if (sda->primary_sercom.sercom != scl->primary_sercom.sercom) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError,
"SDA and SCL pins must share a SERCOM"));
}
config_i2c_master.pinmux_pad0 = sda->primary_sercom.pinmux; // SDA
config_i2c_master.pinmux_pad1 = scl->primary_sercom.pinmux; // SCL
config_i2c_master.buffer_timeout = 10000;
enum status_code status = i2c_master_init(&self->i2c_master_instance,
sda->primary_sercom.sercom, &config_i2c_master);
if (status != STATUS_OK) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus init error"));
}
}
void mp_hal_i2c_init(machine_i2c_obj_t *self) {
i2c_master_enable(&self->i2c_master_instance);
}
void mp_hal_i2c_deinit(machine_i2c_obj_t *self) {
i2c_master_disable(&self->i2c_master_instance);
}
void mp_hal_i2c_write(machine_i2c_obj_t *self, uint8_t addr, uint8_t *data,
size_t len) {
struct i2c_master_packet packet = {
.address = addr,
.data_length = len,
.data = data,
.ten_bit_address = false,
.high_speed = false,
.hs_master_code = 0x0,
};
uint16_t timeout = 0;
enum status_code status = STATUS_BUSY;
while (status != STATUS_OK) {
status = i2c_master_write_packet_wait(&self->i2c_master_instance,
&packet);
/* Increment timeout counter and check if timed out. */
if (timeout++ == TIMEOUT) {
break;
}
}
if (status != STATUS_OK) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus error"));
}
}
bool mp_hal_i2c_probe(machine_i2c_obj_t *self, uint8_t addr) {
uint8_t buf;
struct i2c_master_packet packet = {
.address = addr,
.data_length = 0,
.data = &buf,
.ten_bit_address = false,
.high_speed = false,
.hs_master_code = 0x0,
};
enum status_code status = i2c_master_write_packet_wait(
&self->i2c_master_instance, &packet);
return status == STATUS_OK;
}
void mp_hal_i2c_read(machine_i2c_obj_t *self, uint8_t addr, uint8_t *data,
size_t len) {
struct i2c_master_packet packet = {
.address = addr,
.data_length = len,
.data = data,
.ten_bit_address = false,
.high_speed = false,
.hs_master_code = 0x0,
};
uint16_t timeout = 0;
enum status_code status = STATUS_BUSY;
while (status != STATUS_OK) {
status = i2c_master_read_packet_wait(&self->i2c_master_instance,
&packet);
/* Increment timeout counter and check if timed out. */
if (timeout++ == TIMEOUT) {
break;
}
}
if (status != STATUS_OK) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus error"));
}
}
void mp_hal_i2c_write_mem(machine_i2c_obj_t *self, uint8_t addr,
uint16_t memaddr, const uint8_t *src, size_t len) {
uint8_t buffer[len+1];
buffer[0] = (uint8_t) memaddr;
for (int i = 0; i < len; i++) {
buffer[i+1] = src[i];
}
struct i2c_master_packet packet = {
.address = addr,
.data_length = len + 1,
.data = buffer,
.ten_bit_address = false,
.high_speed = false,
.hs_master_code = 0x0,
};
uint16_t timeout = 0;
enum status_code status = STATUS_BUSY;
while (status != STATUS_OK) {
status = i2c_master_write_packet_wait(&self->i2c_master_instance,
&packet);
/* Increment timeout counter and check if timed out. */
if (timeout++ == TIMEOUT) {
break;
}
}
if (status != STATUS_OK) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus error"));
}
}
void mp_hal_i2c_read_mem(machine_i2c_obj_t *self, uint8_t addr, uint16_t memaddr, uint8_t *dest, size_t len) {
// Write the memory address.
struct i2c_master_packet packet = {
.address = addr,
.data_length = 1,
.data = (uint8_t *)&memaddr,
.ten_bit_address = false,
.high_speed = false,
.hs_master_code = 0x0,
};
uint16_t timeout = 0;
enum status_code status = STATUS_BUSY;
while (status != STATUS_OK) {
status = i2c_master_write_packet_wait_no_stop(
&self->i2c_master_instance, &packet);
/* Increment timeout counter and check if timed out. */
if (timeout++ == TIMEOUT) {
break;
}
}
if (status != STATUS_OK) {
i2c_master_send_stop(&self->i2c_master_instance);
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus error"));
}
// i2c_read will do a repeated start, and then read the I2C memory
mp_hal_i2c_read(self, addr, dest, len);
return;
}
void mp_hal_spi_construct(machine_spi_obj_t *self, const pin_obj_t * clock,
const pin_obj_t * mosi, const pin_obj_t * miso,
uint32_t baudrate) {
struct spi_config config_spi_master;
spi_get_config_defaults(&config_spi_master);
// Depends on where MOSI and CLK are.
uint8_t dopo = 8;
if (clock->primary_sercom.pad == 1) {
if (mosi->primary_sercom.pad == 0) {
dopo = 0;
} else if (mosi->primary_sercom.pad == 3) {
dopo = 2;
}
} else if (clock->primary_sercom.pad == 3) {
if (mosi->primary_sercom.pad == 0) {
dopo = 3;
} else if (mosi->primary_sercom.pad == 2) {
dopo = 1;
}
}
if (dopo == 8) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "SPI MOSI and clock pins incompatible."));
}
config_spi_master.mux_setting = (dopo << SERCOM_SPI_CTRLA_DOPO_Pos) |
(miso->primary_sercom.pad << SERCOM_SPI_CTRLA_DIPO_Pos);
// Map pad to pinmux through a short array.
uint32_t *pinmuxes[4] = {&config_spi_master.pinmux_pad0,
&config_spi_master.pinmux_pad1,
&config_spi_master.pinmux_pad2,
&config_spi_master.pinmux_pad3};
*pinmuxes[clock->primary_sercom.pad] = clock->primary_sercom.pinmux;
*pinmuxes[mosi->primary_sercom.pad] = mosi->primary_sercom.pinmux;
*pinmuxes[miso->primary_sercom.pad] = miso->primary_sercom.pinmux;
config_spi_master.mode_specific.master.baudrate = baudrate;
spi_init(&self->spi_master_instance, mosi->primary_sercom.sercom, &config_spi_master);
}
void mp_hal_spi_init(machine_spi_obj_t *self) {
spi_enable(&self->spi_master_instance);
}
void mp_hal_spi_deinit(machine_spi_obj_t *self) {
spi_disable(&self->spi_master_instance);
}
void mp_hal_spi_transfer(machine_spi_obj_t *self, size_t len, const uint8_t *src,
uint8_t *dest) {
// TODO(tannewt): Don't cast away the const. Change ASF to respect it instead.
enum status_code status = spi_transceive_buffer_wait(
&self->spi_master_instance, (uint8_t *) src, dest, len);
if (status != STATUS_OK) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "SPI bus error"));
}
}