atmel-samd: Add I2C support.

This commit also introduces a new shared-bindings directory which is used to store the common Python -> C binding code. By having a shared directory we can ensure that the Python API across ports is the same. Each port will have a corresponding common-hal directory which provides definitions for the C api used in the shared-bindings code. That way the compiler can enforce the C api.

To migrate to this new shared API create a common-hal directory within your port and change the Makefile to compile both the shared-bindings and common-hal files. See atmel-samd/Makefile SRC_BINDINGS for an example.
This commit is contained in:
Scott Shawcroft 2016-09-13 11:46:22 -07:00
parent 05368d2c58
commit 7d8929c470
10 changed files with 917 additions and 186 deletions

View File

@ -18,24 +18,20 @@ include boards/$(BOARD)/mpconfigboard.mk
# Add $(BUILD)/pins_qstr.h $(BUILD)/modstm_qstr.h
QSTR_DEFS = qstrdefsport.h
CROSS = 0
# include py core make definitions
include ../py/py.mk
ifeq ($(CROSS), 1)
CROSS_COMPILE = arm-none-eabi-
endif
BOSSAC := /Users/tannewt/ArduinoCore-samd/tools/bossac_osx
HAL_DIR=hal/$(MCU_SERIES)
INC += -I.
INC += -I..
INC += -I../lib/mp-readline
INC += -I../lib/timeutils
INC += -Icommon-hal/modules/
INC += -Iasf/common/boards/
INC += -Iasf/common/services/sleepmgr/
INC += -Iasf/common/services/usb/
@ -51,6 +47,8 @@ INC += $(addprefix -Iasf/sam0/,\
drivers/adc/adc_sam_d_r \
drivers/dac \
drivers/dac/dac_sam_d_c \
drivers/sercom \
drivers/sercom/i2c \
drivers/system/clock \
drivers/system/clock/clock_samd21_r21_da \
drivers/system/interrupt \
@ -58,9 +56,8 @@ INC += $(addprefix -Iasf/sam0/,\
drivers/system/pinmux \
drivers/system/power/power_sam_d_r \
drivers/system/reset/reset_sam_d_r \
drivers/sercom/ \
drivers/tc/ \
drivers/usb/ \
drivers/tc \
drivers/usb \
utils \
utils/cmsis/samd21/include \
utils/cmsis/samd21/source \
@ -71,7 +68,6 @@ INC += -Iasf/thirdparty/CMSIS/Include
INC += -Iboards/$(BOARD)/
INC += -I$(BUILD)
ifeq ($(CROSS), 1)
CFLAGS_CORTEX_M0 = \
-mthumb \
-mabi=aapcs-linux \
@ -94,9 +90,6 @@ CFLAGS_CORTEX_M0 = \
-DUSART_CALLBACK_MODE=true \
-DUSB_DEVICE_LPM_SUPPORT
CFLAGS = $(INC) -Wall -Werror -ansi -std=gnu99 -nostdlib $(CFLAGS_CORTEX_M0) $(COPT)
else
CFLAGS = -m32 $(INC) -Wall -Werror -ansi -std=gnu99 $(COPT)
endif
#Debugging/Optimization
ifeq ($(DEBUG), 1)
@ -105,16 +98,10 @@ else
CFLAGS += -Os -DNDEBUG
endif
LIBS =
ifeq ($(CROSS), 1)
LIBGCC_FILE_NAME = $(shell $(CC) $(CFLAGS) -print-libgcc-file-name)
LIBM_FILE_NAME = $(shell $(CC) $(CFLAGS) -print-file-name=libm.a)
LDFLAGS = -Lasf/thirdparty/CMSIS/Lib/GCC/ -L $(dir $(LIBGCC_FILE_NAME)) -L $(dir $(LIBM_FILE_NAME)) -nostdlib -T $(LD_FILE) -Map=$@.map --cref --gc-sections
LIBS += -larm_cortexM0l_math -lm -lgcc -lc
else
LD = gcc
LDFLAGS = -m32 -Wl,-Map=$@.map,--cref
endif
LIBS = -larm_cortexM0l_math -lm -lgcc -lc
SRC_ASF = $(addprefix asf/sam0/,\
@ -122,6 +109,7 @@ SRC_ASF = $(addprefix asf/sam0/,\
drivers/dac/dac_sam_d_c/dac.c \
drivers/nvm/nvm.c \
drivers/port/port.c \
drivers/sercom/i2c/i2c_sam0/i2c_master.c \
drivers/sercom/sercom.c \
drivers/sercom/sercom_interrupt.c \
drivers/sercom/usart/usart.c \
@ -160,7 +148,7 @@ SRC_C = \
asf/common/utils/interrupt/interrupt_sam_nvic.c \
asf/common2/services/delay/sam0/systick_counter.c \
asf/sam0/utils/cmsis/samd21/source/gcc/startup_samd21.c \
asf/sam0/utils/cmsis/samd21/source/system_samd21.c \
asf/sam0/utils/cmsis/samd21/source/system_samd21.c \
asf/sam0/utils/syscalls/gcc/syscalls.c \
boards/$(BOARD)/pins.c \
lib/fatfs/ff.c \
@ -172,20 +160,27 @@ SRC_C = \
lib/libc/string0.c \
lib/mp-readline/readline.c
# TODO(tannewt): Use this sed line to extract the RST docs from these sources:
# sed': sed -n 's+^//|++p' ../api/machine.c
#
# RST lines are prefixed with //|
SRC_BINDINGS = \
modules/machine.c
SRC_BINDINGS_EXPANDED = $(addprefix shared-bindings/, $(SRC_BINDINGS)) \
$(addprefix common-hal/, $(SRC_BINDINGS))
SRC_AUTOGEN = \
$(BUILD)/_frozen_mpy.c \
OBJ = $(PY_O) $(addprefix $(BUILD)/, $(SRC_C:.c=.o))
OBJ += $(addprefix $(BUILD)/, $(SRC_ASF:.c=.o))
OBJ += $(addprefix $(BUILD)/, $(SRC_AUTOGEN:.c=.o))
OBJ += $(addprefix $(BUILD)/, $(SRC_BINDINGS_EXPANDED:.c=.o))
SRC_QSTR += $(SRC_C)
SRC_QSTR += $(SRC_C) $(SRC_BINDINGS_EXPANDED)
ifeq ($(CROSS), 1)
all: $(BUILD)/firmware.bin
else
all: $(BUILD)/firmware.elf
endif
$(BUILD)/_frozen_mpy.c: frozentest.mpy $(BUILD)/genhdr/qstrdefs.generated.h
$(ECHO) "MISC freezing bytecode"

View File

@ -1,54 +1,113 @@
#include "pins.h"
#include "asf/sam0/drivers/system/system.h"
PIN_NO_TIMERS_(PA02, true, ADC_POSITIVE_INPUT_PIN0);
PIN_ONE_TIMER_(PB08, true, ADC_POSITIVE_INPUT_PIN8,
TC4, 0, 0, 0, PIN_PB08E_TC4_WO0, MUX_PB08E_TC4_WO0);
PIN_ONE_TIMER_(PB09, true, ADC_POSITIVE_INPUT_PIN9,
TC4, 0, 1, 1, PIN_PB09E_TC4_WO1, MUX_PB09E_TC4_WO1);
PIN_ONE_TIMER_(PA04, true, ADC_POSITIVE_INPUT_PIN4,
0, TCC0, 0, 0, PIN_PA04E_TCC0_WO0, MUX_PA04E_TCC0_WO0);
PIN_ONE_TIMER_(PA05, true, ADC_POSITIVE_INPUT_PIN5,
0, TCC0, 1, 1, PIN_PA05E_TCC0_WO1, MUX_PA05E_TCC0_WO1);
PIN_NO_TIMERS_(PB02, true, ADC_POSITIVE_INPUT_PIN10);
PIN_TWO_TIMERS(PA11, true, ADC_POSITIVE_INPUT_PIN19,
0, TCC1, 1, 1, PIN_PA11E_TCC1_WO1, MUX_PA11E_TCC1_WO1,
0, TCC0, 3, 3, PIN_PA11F_TCC0_WO3, MUX_PA11F_TCC0_WO3);
PIN_TWO_TIMERS(PA10, true, ADC_POSITIVE_INPUT_PIN18,
0, TCC1, 0, 0, PIN_PA10E_TCC1_WO0, MUX_PA10E_TCC1_WO0,
0, TCC0, 2, 2, PIN_PA10F_TCC0_WO2, MUX_PA10F_TCC0_WO2);
PIN_TWO_TIMERS(PA14, false, NO_ADC_INPUT,
TC3, 0, 0, 0, PIN_PA14E_TC3_WO0, MUX_PA14E_TC3_WO0,
0, TCC0, 0, 4, PIN_PA14F_TCC0_WO4, MUX_PA14F_TCC0_WO4);
PIN_TWO_TIMERS(PA09, true, ADC_POSITIVE_INPUT_PIN17,
0, TCC0, 1, 1, PIN_PA09E_TCC0_WO1, MUX_PA09E_TCC0_WO1,
0, TCC1, 3, 3, PIN_PA09F_TCC1_WO3, MUX_PA09F_TCC1_WO3);
PIN_TWO_TIMERS(PA08, true, ADC_POSITIVE_INPUT_PIN16,
0, TCC0, 0, 0, PIN_PA08E_TCC0_WO0, MUX_PA08E_TCC0_WO0,
0, TCC1, 2, 2, PIN_PA08F_TCC1_WO2, MUX_PA08F_TCC1_WO2);
PIN_TWO_TIMERS(PA15, false, NO_ADC_INPUT,
TC3, 0, 1, 1, PIN_PA15E_TC3_WO1, MUX_PA15E_TC3_WO1,
0, TCC0, 1, 5, PIN_PA15F_TCC0_WO5, MUX_PA15F_TCC0_WO5);
PIN_ONE_TIMER_(PA20, false, NO_ADC_INPUT,
0, TCC0, 2, 6, PIN_PA20F_TCC0_WO6, MUX_PA20F_TCC0_WO6);
PIN_ONE_TIMER_(PA21, false, NO_ADC_INPUT,
0, TCC0, 3, 7, PIN_PA21F_TCC0_WO7, MUX_PA21F_TCC0_WO7);
PIN_ONE_TIMER_(PA06, true, ADC_POSITIVE_INPUT_PIN6,
0, TCC1, 0, 0, PIN_PA06E_TCC1_WO0, MUX_PA06E_TCC1_WO0);
PIN_ONE_TIMER_(PA07, true, ADC_POSITIVE_INPUT_PIN7,
0, TCC1, 1, 1, PIN_PA07E_TCC1_WO1, MUX_PA07E_TCC1_WO1);
PIN_TWO_TIMERS(PA18, false, NO_ADC_INPUT,
TC3, 0, 0, 0, PIN_PA18E_TC3_WO0, MUX_PA18E_TC3_WO0,
0, TCC0, 2, 2, PIN_PA18F_TCC0_WO2, MUX_PA18F_TCC0_WO2);
PIN_TWO_TIMERS(PA16, false, NO_ADC_INPUT,
0, TCC2, 0, 0, PIN_PA16E_TCC2_WO0, MUX_PA16E_TCC2_WO0,
0, TCC0, 2, 6, PIN_PA16F_TCC0_WO6, MUX_PA16F_TCC0_WO6);
PIN_TWO_TIMERS(PA19, false, NO_ADC_INPUT,
TC3, 0, 1, 1, PIN_PA19E_TC3_WO1, MUX_PA19E_TC3_WO1,
0, TCC0, 3, 3, PIN_PA19F_TCC0_WO3, MUX_PA19F_TCC0_WO3);
PIN_TWO_TIMERS(PA17, false, NO_ADC_INPUT,
0, TCC2, 1, 1, PIN_PA17E_TCC2_WO1, MUX_PA17E_TCC2_WO1,
0, TCC0, 3, 7, PIN_PA17F_TCC0_WO7, MUX_PA17F_TCC0_WO7);
PIN(PA02, true, ADC_POSITIVE_INPUT_PIN0, NO_TIMER, NO_TIMER, NO_SERCOM,
NO_SERCOM);
PIN(PB08, true, ADC_POSITIVE_INPUT_PIN8,
TIMER(TC4, 0, 0, 0, PIN_PB08E_TC4_WO0, MUX_PB08E_TC4_WO0),
NO_TIMER,
SERCOM(SERCOM4, 0, PINMUX_PB08D_SERCOM4_PAD0),
NO_SERCOM);
PIN(PB09, true, ADC_POSITIVE_INPUT_PIN9,
TIMER(TC4, 0, 1, 1, PIN_PB09E_TC4_WO1, MUX_PB09E_TC4_WO1),
NO_TIMER,
SERCOM(SERCOM4, 1, PINMUX_PB09D_SERCOM4_PAD1),
NO_SERCOM);
PIN(PA04, true, ADC_POSITIVE_INPUT_PIN4,
TIMER(0, TCC0, 0, 0, PIN_PA04E_TCC0_WO0, MUX_PA04E_TCC0_WO0),
NO_TIMER,
SERCOM(SERCOM0, 0, PINMUX_PA04D_SERCOM0_PAD0),
NO_SERCOM);
PIN(PA05, true, ADC_POSITIVE_INPUT_PIN5,
TIMER(0, TCC0, 1, 1, PIN_PA05E_TCC0_WO1, MUX_PA05E_TCC0_WO1),
NO_TIMER,
SERCOM(SERCOM0, 1, PINMUX_PA05D_SERCOM0_PAD1),
NO_SERCOM);
PIN(PB02, true, ADC_POSITIVE_INPUT_PIN10,
NO_TIMER,
NO_TIMER,
SERCOM(SERCOM5, 0, PINMUX_PB02D_SERCOM5_PAD0),
NO_SERCOM);
PIN(PA11, true, ADC_POSITIVE_INPUT_PIN19,
TIMER(0, TCC1, 1, 1, PIN_PA11E_TCC1_WO1, MUX_PA11E_TCC1_WO1),
TIMER(0, TCC0, 3, 3, PIN_PA11F_TCC0_WO3, MUX_PA11F_TCC0_WO3),
SERCOM(SERCOM0, 3, PINMUX_PA11C_SERCOM0_PAD3),
SERCOM(SERCOM2, 3, PINMUX_PA11D_SERCOM2_PAD3));
PIN(PA10, true, ADC_POSITIVE_INPUT_PIN18,
TIMER(0, TCC1, 0, 0, PIN_PA10E_TCC1_WO0, MUX_PA10E_TCC1_WO0),
TIMER(0, TCC0, 2, 2, PIN_PA10F_TCC0_WO2, MUX_PA10F_TCC0_WO2),
SERCOM(SERCOM0, 2, PINMUX_PA10C_SERCOM0_PAD2),
SERCOM(SERCOM2, 2, PINMUX_PA10D_SERCOM2_PAD2));
PIN(PA14, false, NO_ADC_INPUT,
TIMER(TC3, 0, 0, 0, PIN_PA14E_TC3_WO0, MUX_PA14E_TC3_WO0),
TIMER(0, TCC0, 0, 4, PIN_PA14F_TCC0_WO4, MUX_PA14F_TCC0_WO4),
SERCOM(SERCOM2, 2, PINMUX_PA14C_SERCOM2_PAD2),
SERCOM(SERCOM4, 2, PINMUX_PA14D_SERCOM4_PAD2));
PIN(PA09, true, ADC_POSITIVE_INPUT_PIN17,
TIMER(0, TCC0, 1, 1, PIN_PA09E_TCC0_WO1, MUX_PA09E_TCC0_WO1),
TIMER(0, TCC1, 3, 3, PIN_PA09F_TCC1_WO3, MUX_PA09F_TCC1_WO3),
SERCOM(SERCOM0, 1, PINMUX_PA09C_SERCOM0_PAD1),
SERCOM(SERCOM2, 1, PINMUX_PA09D_SERCOM2_PAD1));
PIN(PA08, true, ADC_POSITIVE_INPUT_PIN16,
TIMER(0, TCC0, 0, 0, PIN_PA08E_TCC0_WO0, MUX_PA08E_TCC0_WO0),
TIMER(0, TCC1, 2, 2, PIN_PA08F_TCC1_WO2, MUX_PA08F_TCC1_WO2),
SERCOM(SERCOM0, 0, PINMUX_PA08C_SERCOM0_PAD0),
SERCOM(SERCOM2, 0, PINMUX_PA08D_SERCOM2_PAD0));
PIN(PA15, false, NO_ADC_INPUT,
TIMER(TC3, 0, 1, 1, PIN_PA15E_TC3_WO1, MUX_PA15E_TC3_WO1),
TIMER(0, TCC0, 1, 5, PIN_PA15F_TCC0_WO5, MUX_PA15F_TCC0_WO5),
SERCOM(SERCOM2, 3, PINMUX_PA15C_SERCOM2_PAD3),
SERCOM(SERCOM4, 3, PINMUX_PA15D_SERCOM4_PAD3));
PIN(PA20, false, NO_ADC_INPUT,
TIMER(0, TCC0, 2, 6, PIN_PA20F_TCC0_WO6, MUX_PA20F_TCC0_WO6),
NO_TIMER,
SERCOM(SERCOM5, 2, PINMUX_PA20C_SERCOM5_PAD2),
SERCOM(SERCOM3, 2, PINMUX_PA20D_SERCOM3_PAD2));
PIN(PA21, false, NO_ADC_INPUT,
TIMER(0, TCC0, 3, 7, PIN_PA21F_TCC0_WO7, MUX_PA21F_TCC0_WO7),
NO_TIMER,
SERCOM(SERCOM5, 3, PINMUX_PA21C_SERCOM5_PAD3),
SERCOM(SERCOM3, 3, PINMUX_PA21D_SERCOM3_PAD3));
PIN(PA06, true, ADC_POSITIVE_INPUT_PIN6,
TIMER(0, TCC1, 0, 0, PIN_PA06E_TCC1_WO0, MUX_PA06E_TCC1_WO0),
NO_TIMER,
SERCOM(SERCOM0, 2, PINMUX_PA06D_SERCOM0_PAD2),
NO_SERCOM);
PIN(PA07, true, ADC_POSITIVE_INPUT_PIN7,
TIMER(0, TCC1, 1, 1, PIN_PA07E_TCC1_WO1, MUX_PA07E_TCC1_WO1),
NO_TIMER,
SERCOM(SERCOM0, 3, PINMUX_PA07D_SERCOM0_PAD3),
NO_SERCOM);
PIN(PA18, false, NO_ADC_INPUT,
TIMER(TC3, 0, 0, 0, PIN_PA18E_TC3_WO0, MUX_PA18E_TC3_WO0),
TIMER(0, TCC0, 2, 2, PIN_PA18F_TCC0_WO2, MUX_PA18F_TCC0_WO2),
SERCOM(SERCOM1, 2, PINMUX_PA18C_SERCOM1_PAD2),
SERCOM(SERCOM3, 2, PINMUX_PA18D_SERCOM3_PAD2));
PIN(PA16, false, NO_ADC_INPUT,
TIMER(0, TCC2, 0, 0, PIN_PA16E_TCC2_WO0, MUX_PA16E_TCC2_WO0),
TIMER(0, TCC0, 2, 6, PIN_PA16F_TCC0_WO6, MUX_PA16F_TCC0_WO6),
SERCOM(SERCOM1, 0, PINMUX_PA16C_SERCOM1_PAD0),
SERCOM(SERCOM3, 0, PINMUX_PA16D_SERCOM3_PAD0));
PIN(PA19, false, NO_ADC_INPUT,
TIMER(TC3, 0, 1, 1, PIN_PA19E_TC3_WO1, MUX_PA19E_TC3_WO1),
TIMER(0, TCC0, 3, 3, PIN_PA19F_TCC0_WO3, MUX_PA19F_TCC0_WO3),
SERCOM(SERCOM1, 3, PINMUX_PA19C_SERCOM1_PAD3),
SERCOM(SERCOM3, 3, PINMUX_PA19C_SERCOM1_PAD3));
PIN(PA17, false, NO_ADC_INPUT,
TIMER(0, TCC2, 1, 1, PIN_PA17E_TCC2_WO1, MUX_PA17E_TCC2_WO1),
TIMER(0, TCC0, 3, 7, PIN_PA17F_TCC0_WO7, MUX_PA17F_TCC0_WO7),
SERCOM(SERCOM1, 1, PINMUX_PA17C_SERCOM1_PAD1),
SERCOM(SERCOM3, 1, PINMUX_PA17D_SERCOM3_PAD1));
PIN(PA22, false, NO_ADC_INPUT,
TIMER(TC4, 0, 0, 0, PIN_PA22E_TC4_WO0, MUX_PA22E_TC4_WO0),
TIMER(0, TCC0, 0, 4, PIN_PA22F_TCC0_WO4, MUX_PA22F_TCC0_WO4),
SERCOM(SERCOM3, 0, PINMUX_PA22C_SERCOM3_PAD0),
SERCOM(SERCOM5, 0, PINMUX_PA22D_SERCOM5_PAD0));
PIN(PA23, false, NO_ADC_INPUT,
TIMER(TC4, 0, 1, 1, PIN_PA23E_TC4_WO1, MUX_PA23E_TC4_WO1),
TIMER(0, TCC0, 1, 5, PIN_PA23F_TCC0_WO5, MUX_PA23F_TCC0_WO5),
SERCOM(SERCOM3, 1, PINMUX_PA23C_SERCOM3_PAD1),
SERCOM(SERCOM5, 1, PINMUX_PA23C_SERCOM3_PAD1));
STATIC const mp_map_elem_t pin_cpu_pins_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA02), (mp_obj_t)&pin_PA02 },
@ -71,6 +130,8 @@ STATIC const mp_map_elem_t pin_cpu_pins_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA16), (mp_obj_t)&pin_PA16 },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA19), (mp_obj_t)&pin_PA19 },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA17), (mp_obj_t)&pin_PA17 },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA22), (mp_obj_t)&pin_PA22 },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA23), (mp_obj_t)&pin_PA23 },
};
MP_DEFINE_CONST_DICT(pin_cpu_pins_locals_dict, pin_cpu_pins_locals_dict_table);
@ -95,5 +156,7 @@ STATIC const mp_map_elem_t pin_board_pins_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_D11), (mp_obj_t)&pin_PA16 },
{ MP_OBJ_NEW_QSTR(MP_QSTR_D12), (mp_obj_t)&pin_PA19 },
{ MP_OBJ_NEW_QSTR(MP_QSTR_D13), (mp_obj_t)&pin_PA17 },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SDA), (mp_obj_t)&pin_PA22 },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SCL), (mp_obj_t)&pin_PA23 },
};
MP_DEFINE_CONST_DICT(pin_board_pins_locals_dict, pin_board_pins_locals_dict_table);

View File

@ -1,56 +1,104 @@
#include "pins.h"
#include "asf/sam0/drivers/system/system.h"
PIN_NO_TIMERS_(PA02, true, ADC_POSITIVE_INPUT_PIN0);
PIN_ONE_TIMER_(PB08, true, ADC_POSITIVE_INPUT_PIN8,
TC4, 0, 0, 0, PIN_PB08E_TC4_WO0, MUX_PB08E_TC4_WO0);
PIN_ONE_TIMER_(PB09, true, ADC_POSITIVE_INPUT_PIN9,
TC4, 0, 1, 1, PIN_PB09E_TC4_WO1, MUX_PB09E_TC4_WO1);
PIN_ONE_TIMER_(PA04, true, ADC_POSITIVE_INPUT_PIN4,
0, TCC0, 0, 0, PIN_PA04E_TCC0_WO0, MUX_PA04E_TCC0_WO0);
PIN_ONE_TIMER_(PA05, true, ADC_POSITIVE_INPUT_PIN5,
0, TCC0, 1, 1, PIN_PA05E_TCC0_WO1, MUX_PA05E_TCC0_WO1);
PIN_NO_TIMERS_(PB02, true, ADC_POSITIVE_INPUT_PIN10);
PIN_TWO_TIMERS(PB11, false, NO_ADC_INPUT,
TC5, 0, 1, 1, PIN_PB11E_TC5_WO1, MUX_PB11E_TC5_WO1,
0, TCC0, 1, 5, PIN_PB11F_TCC0_WO5, MUX_PB11F_TCC0_WO5);
PIN_TWO_TIMERS(PB10, false, NO_ADC_INPUT,
TC5, 0, 0, 0, PIN_PB10E_TC5_WO0, MUX_PB10E_TC5_WO0,
0, TCC0, 0, 4, PIN_PB10F_TCC0_WO4, MUX_PB10F_TCC0_WO4);
PIN_TWO_TIMERS(PA12, false, NO_ADC_INPUT,
0, TCC2, 0, 0, PIN_PA12E_TCC2_WO0, MUX_PA12E_TCC2_WO0,
0, TCC0, 2, 6, PIN_PA12F_TCC0_WO6, MUX_PA12F_TCC0_WO6);
PIN_TWO_TIMERS(PA11, true, ADC_POSITIVE_INPUT_PIN19,
0, TCC1, 1, 1, PIN_PA11E_TCC1_WO1, MUX_PA11E_TCC1_WO1,
0, TCC0, 3, 3, PIN_PA11F_TCC0_WO3, MUX_PA11F_TCC0_WO3);
PIN_TWO_TIMERS(PA10, true, ADC_POSITIVE_INPUT_PIN18,
0, TCC1, 0, 0, PIN_PA10E_TCC1_WO0, MUX_PA10E_TCC1_WO0,
0, TCC0, 2, 2, PIN_PA10F_TCC0_WO2, MUX_PA10F_TCC0_WO2);
PIN_TWO_TIMERS(PA22, false, NO_ADC_INPUT,
TC4, 0, 0, 0, PIN_PA22E_TC4_WO0, MUX_PA22E_TC4_WO0,
0, TCC0, 0, 4, PIN_PA22F_TCC0_WO4, MUX_PA22F_TCC0_WO4);
PIN_TWO_TIMERS(PA23, false, NO_ADC_INPUT,
TC4, 0, 1, 1, PIN_PA23E_TC4_WO1, MUX_PA23E_TC4_WO1,
0, TCC0, 1, 5, PIN_PA23F_TCC0_WO5, MUX_PA23F_TCC0_WO5);
PIN_TWO_TIMERS(PA15, false, NO_ADC_INPUT,
TC3, 0, 1, 1, PIN_PA15E_TC3_WO1, MUX_PA15E_TC3_WO1,
0, TCC0, 1, 5, PIN_PA15F_TCC0_WO5, MUX_PA15F_TCC0_WO5);
PIN_ONE_TIMER_(PA20, false, NO_ADC_INPUT,
0, TCC0, 2, 6, PIN_PA20F_TCC0_WO6, MUX_PA20F_TCC0_WO6);
PIN_ONE_TIMER_(PA07, true, ADC_POSITIVE_INPUT_PIN7,
0, TCC1, 1, 1, PIN_PA07E_TCC1_WO1, MUX_PA07E_TCC1_WO1);
PIN_TWO_TIMERS(PA18, false, NO_ADC_INPUT,
TC3, 0, 0, 0, PIN_PA18E_TC3_WO0, MUX_PA18E_TC3_WO0,
0, TCC0, 2, 2, PIN_PA18F_TCC0_WO2, MUX_PA18F_TCC0_WO2);
PIN_TWO_TIMERS(PA16, false, NO_ADC_INPUT,
0, TCC2, 0, 0, PIN_PA16E_TCC2_WO0, MUX_PA16E_TCC2_WO0,
0, TCC0, 2, 6, PIN_PA16F_TCC0_WO6, MUX_PA16F_TCC0_WO6);
PIN_TWO_TIMERS(PA19, false, NO_ADC_INPUT,
TC3, 0, 1, 1, PIN_PA19E_TC3_WO1, MUX_PA19E_TC3_WO1,
0, TCC0, 3, 3, PIN_PA19F_TCC0_WO3, MUX_PA19F_TCC0_WO3);
PIN_TWO_TIMERS(PA17, false, NO_ADC_INPUT,
0, TCC2, 1, 1, PIN_PA17E_TCC2_WO1, MUX_PA17E_TCC2_WO1,
0, TCC0, 3, 7, PIN_PA17F_TCC0_WO7, MUX_PA17F_TCC0_WO7);
// S0/S2 S2/S4 S1/S3 S3/S5
// i2c pins PA08, PA09, PA12, PA13, PA16, PA17, PA22, PA23
PIN(PA02, true, ADC_POSITIVE_INPUT_PIN0, NO_TIMER, NO_TIMER, NO_SERCOM, \
NO_SERCOM);
PIN(PB08, true, ADC_POSITIVE_INPUT_PIN8,
TIMER(TC4, 0, 0, 0, PIN_PB08E_TC4_WO0, MUX_PB08E_TC4_WO0),
NO_TIMER,
SERCOM(SERCOM4, 0, PINMUX_PB08D_SERCOM4_PAD0),
NO_SERCOM);
PIN(PB09, true, ADC_POSITIVE_INPUT_PIN9,
TIMER(TC4, 0, 1, 1, PIN_PB09E_TC4_WO1, MUX_PB09E_TC4_WO1),
NO_TIMER,
SERCOM(SERCOM4, 1, PINMUX_PB09D_SERCOM4_PAD1),
NO_SERCOM);
PIN(PA04, true, ADC_POSITIVE_INPUT_PIN4,
TIMER(0, TCC0, 0, 0, PIN_PA04E_TCC0_WO0, MUX_PA04E_TCC0_WO0),
NO_TIMER,
SERCOM(SERCOM0, 0, PINMUX_PA04D_SERCOM0_PAD0),
NO_SERCOM);
PIN(PA05, true, ADC_POSITIVE_INPUT_PIN5,
TIMER(0, TCC0, 1, 1, PIN_PA05E_TCC0_WO1, MUX_PA05E_TCC0_WO1),
NO_TIMER,
SERCOM(SERCOM0, 1, PINMUX_PA05D_SERCOM0_PAD1),
NO_SERCOM);
PIN(PB02, true, ADC_POSITIVE_INPUT_PIN10,
NO_TIMER,
NO_TIMER,
SERCOM(SERCOM5, 0, PINMUX_PB02D_SERCOM5_PAD0),
NO_SERCOM);
PIN(PB11, false, NO_ADC_INPUT,
TIMER(TC5, 0, 1, 1, PIN_PB11E_TC5_WO1, MUX_PB11E_TC5_WO1),
TIMER(0, TCC0, 1, 5, PIN_PB11F_TCC0_WO5, MUX_PB11F_TCC0_WO5),
SERCOM(SERCOM4, 3, PINMUX_PB11D_SERCOM4_PAD3),
NO_SERCOM);
PIN(PB10, false, NO_ADC_INPUT,
TIMER(TC5, 0, 0, 0, PIN_PB10E_TC5_WO0, MUX_PB10E_TC5_WO0),
TIMER(0, TCC0, 0, 4, PIN_PB10F_TCC0_WO4, MUX_PB10F_TCC0_WO4),
SERCOM(SERCOM4, 2, PINMUX_PB10D_SERCOM4_PAD2),
NO_SERCOM);
PIN(PA12, false, NO_ADC_INPUT,
TIMER(0, TCC2, 0, 0, PIN_PA12E_TCC2_WO0, MUX_PA12E_TCC2_WO0),
TIMER(0, TCC0, 2, 6, PIN_PA12F_TCC0_WO6, MUX_PA12F_TCC0_WO6),
SERCOM(SERCOM2, 0, PINMUX_PA12C_SERCOM2_PAD0),
SERCOM(SERCOM4, 0, PINMUX_PA12D_SERCOM4_PAD0));
PIN(PA11, true, ADC_POSITIVE_INPUT_PIN19,
TIMER(0, TCC1, 1, 1, PIN_PA11E_TCC1_WO1, MUX_PA11E_TCC1_WO1),
TIMER(0, TCC0, 3, 3, PIN_PA11F_TCC0_WO3, MUX_PA11F_TCC0_WO3),
SERCOM(SERCOM0, 3, PINMUX_PA11C_SERCOM0_PAD3),
SERCOM(SERCOM2, 3, PINMUX_PA11D_SERCOM2_PAD3));
PIN(PA10, true, ADC_POSITIVE_INPUT_PIN18,
TIMER(0, TCC1, 0, 0, PIN_PA10E_TCC1_WO0, MUX_PA10E_TCC1_WO0),
TIMER(0, TCC0, 2, 2, PIN_PA10F_TCC0_WO2, MUX_PA10F_TCC0_WO2),
SERCOM(SERCOM0, 2, PINMUX_PA10C_SERCOM0_PAD2),
SERCOM(SERCOM2, 2, PINMUX_PA10D_SERCOM2_PAD2));
PIN(PA22, false, NO_ADC_INPUT,
TIMER(TC4, 0, 0, 0, PIN_PA22E_TC4_WO0, MUX_PA22E_TC4_WO0),
TIMER(0, TCC0, 0, 4, PIN_PA22F_TCC0_WO4, MUX_PA22F_TCC0_WO4),
SERCOM(SERCOM3, 0, PINMUX_PA22C_SERCOM3_PAD0),
SERCOM(SERCOM5, 0, PINMUX_PA22D_SERCOM5_PAD0));
PIN(PA23, false, NO_ADC_INPUT,
TIMER(TC4, 0, 1, 1, PIN_PA23E_TC4_WO1, MUX_PA23E_TC4_WO1),
TIMER(0, TCC0, 1, 5, PIN_PA23F_TCC0_WO5, MUX_PA23F_TCC0_WO5),
SERCOM(SERCOM3, 1, PINMUX_PA23C_SERCOM3_PAD1),
SERCOM(SERCOM5, 1, PINMUX_PA23C_SERCOM3_PAD1));
PIN(PA15, false, NO_ADC_INPUT,
TIMER(TC3, 0, 1, 1, PIN_PA15E_TC3_WO1, MUX_PA15E_TC3_WO1),
TIMER(0, TCC0, 1, 5, PIN_PA15F_TCC0_WO5, MUX_PA15F_TCC0_WO5),
SERCOM(SERCOM2, 3, PINMUX_PA15C_SERCOM2_PAD3),
SERCOM(SERCOM4, 3, PINMUX_PA15D_SERCOM4_PAD3));
PIN(PA20, false, NO_ADC_INPUT,
TIMER(0, TCC0, 2, 6, PIN_PA20F_TCC0_WO6, MUX_PA20F_TCC0_WO6),
NO_TIMER,
SERCOM(SERCOM5, 2, PINMUX_PA20C_SERCOM5_PAD2),
SERCOM(SERCOM3, 2, PINMUX_PA20D_SERCOM3_PAD2));
PIN(PA07, true, ADC_POSITIVE_INPUT_PIN7,
TIMER(0, TCC1, 1, 1, PIN_PA07E_TCC1_WO1, MUX_PA07E_TCC1_WO1),
NO_TIMER,
SERCOM(SERCOM0, 3, PINMUX_PA07D_SERCOM0_PAD3),
NO_SERCOM);
PIN(PA18, false, NO_ADC_INPUT,
TIMER(TC3, 0, 0, 0, PIN_PA18E_TC3_WO0, MUX_PA18E_TC3_WO0),
TIMER(0, TCC0, 2, 2, PIN_PA18F_TCC0_WO2, MUX_PA18F_TCC0_WO2),
SERCOM(SERCOM1, 2, PINMUX_PA18C_SERCOM1_PAD2),
SERCOM(SERCOM3, 2, PINMUX_PA18D_SERCOM3_PAD2));
PIN(PA16, false, NO_ADC_INPUT,
TIMER(0, TCC2, 0, 0, PIN_PA16E_TCC2_WO0, MUX_PA16E_TCC2_WO0),
TIMER(0, TCC0, 2, 6, PIN_PA16F_TCC0_WO6, MUX_PA16F_TCC0_WO6),
SERCOM(SERCOM1, 0, PINMUX_PA16C_SERCOM1_PAD0),
SERCOM(SERCOM3, 0, PINMUX_PA16D_SERCOM3_PAD0));
PIN(PA19, false, NO_ADC_INPUT,
TIMER(TC3, 0, 1, 1, PIN_PA19E_TC3_WO1, MUX_PA19E_TC3_WO1),
TIMER(0, TCC0, 3, 3, PIN_PA19F_TCC0_WO3, MUX_PA19F_TCC0_WO3),
SERCOM(SERCOM1, 3, PINMUX_PA19C_SERCOM1_PAD3),
SERCOM(SERCOM3, 3, PINMUX_PA19C_SERCOM1_PAD3));
PIN(PA17, false, NO_ADC_INPUT,
TIMER(0, TCC2, 1, 1, PIN_PA17E_TCC2_WO1, MUX_PA17E_TCC2_WO1),
TIMER(0, TCC0, 3, 7, PIN_PA17F_TCC0_WO7, MUX_PA17F_TCC0_WO7),
SERCOM(SERCOM1, 1, PINMUX_PA17C_SERCOM1_PAD1),
SERCOM(SERCOM3, 1, PINMUX_PA17D_SERCOM3_PAD1));
STATIC const mp_map_elem_t pin_cpu_pins_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA02), (mp_obj_t)&pin_PA02 },

View File

@ -0,0 +1,200 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file contains all of the port specific HAL functions for the machine
// module.
#include "shared-bindings/modules/machine.h"
#include "py/nlr.h"
#include "asf/sam0/drivers/sercom/i2c/i2c_master.h"
// Number of times to try to send packet if failed.
#define TIMEOUT 1
void mp_hal_i2c_init(machine_i2c_obj_t *self, const pin_obj_t* scl,
const pin_obj_t* sda, uint32_t freq) {
struct i2c_master_config config_i2c_master;
i2c_master_get_config_defaults(&config_i2c_master);
// Struct takes the argument in Khz not Hz.
config_i2c_master.baud_rate = freq / 1000;
// TODO(tannewt): Utilize the secondary sercom if the first is already being
// used.
if (sda->primary_sercom.sercom == 0 || sda->primary_sercom.pad != 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError,
"SDA pin must be on SERCOM pad 0"));
}
if (scl->primary_sercom.sercom == 0 || scl->primary_sercom.pad != 1) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError,
"SCL pin must be on SERCOM pad 1"));
}
if (sda->primary_sercom.sercom != scl->primary_sercom.sercom) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError,
"SDA and SCL pins must share a SERCOM"));
}
config_i2c_master.pinmux_pad0 = sda->primary_sercom.pinmux; // SDA
config_i2c_master.pinmux_pad1 = scl->primary_sercom.pinmux; // SCL
config_i2c_master.buffer_timeout = 10000;
enum status_code status = i2c_master_init(&self->i2c_master_instance,
sda->primary_sercom.sercom, &config_i2c_master);
if (status != STATUS_OK) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus init error"));
}
i2c_master_enable(&self->i2c_master_instance);
}
void mp_hal_i2c_write(machine_i2c_obj_t *self, uint8_t addr, uint8_t *data,
size_t len) {
struct i2c_master_packet packet = {
.address = addr,
.data_length = len,
.data = data,
.ten_bit_address = false,
.high_speed = false,
.hs_master_code = 0x0,
};
uint16_t timeout = 0;
enum status_code status = STATUS_BUSY;
while (status != STATUS_OK) {
status = i2c_master_write_packet_wait(&self->i2c_master_instance,
&packet);
/* Increment timeout counter and check if timed out. */
if (timeout++ == TIMEOUT) {
break;
}
}
if (status != STATUS_OK) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus error"));
}
}
bool mp_hal_i2c_probe(machine_i2c_obj_t *self, uint8_t addr) {
uint8_t buf;
struct i2c_master_packet packet = {
.address = addr,
.data_length = 0,
.data = &buf,
.ten_bit_address = false,
.high_speed = false,
.hs_master_code = 0x0,
};
enum status_code status = i2c_master_write_packet_wait(
&self->i2c_master_instance, &packet);
return status == STATUS_OK;
}
void mp_hal_i2c_read(machine_i2c_obj_t *self, uint8_t addr, uint8_t *data,
size_t len) {
struct i2c_master_packet packet = {
.address = addr,
.data_length = len,
.data = data,
.ten_bit_address = false,
.high_speed = false,
.hs_master_code = 0x0,
};
uint16_t timeout = 0;
enum status_code status = STATUS_BUSY;
while (status != STATUS_OK) {
status = i2c_master_read_packet_wait(&self->i2c_master_instance,
&packet);
/* Increment timeout counter and check if timed out. */
if (timeout++ == TIMEOUT) {
break;
}
}
if (status != STATUS_OK) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus error"));
}
}
void mp_hal_i2c_write_mem(machine_i2c_obj_t *self, uint8_t addr,
uint16_t memaddr, const uint8_t *src, size_t len) {
uint8_t buffer[len+1];
buffer[0] = (uint8_t) memaddr;
for (int i = 0; i < len; i++) {
buffer[i+1] = src[i];
}
struct i2c_master_packet packet = {
.address = addr,
.data_length = len + 1,
.data = buffer,
.ten_bit_address = false,
.high_speed = false,
.hs_master_code = 0x0,
};
uint16_t timeout = 0;
enum status_code status = STATUS_BUSY;
while (status != STATUS_OK) {
status = i2c_master_write_packet_wait(&self->i2c_master_instance,
&packet);
/* Increment timeout counter and check if timed out. */
if (timeout++ == TIMEOUT) {
break;
}
}
if (status != STATUS_OK) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus error"));
}
}
void mp_hal_i2c_read_mem(machine_i2c_obj_t *self, uint8_t addr, uint16_t memaddr, uint8_t *dest, size_t len) {
// Write the memory address.
struct i2c_master_packet packet = {
.address = addr,
.data_length = 1,
.data = (uint8_t *)&memaddr,
.ten_bit_address = false,
.high_speed = false,
.hs_master_code = 0x0,
};
uint16_t timeout = 0;
enum status_code status = STATUS_BUSY;
while (status != STATUS_OK) {
status = i2c_master_write_packet_wait_no_stop(
&self->i2c_master_instance, &packet);
/* Increment timeout counter and check if timed out. */
if (timeout++ == TIMEOUT) {
break;
}
}
if (status != STATUS_OK) {
i2c_master_send_stop(&self->i2c_master_instance);
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus error"));
}
// i2c_read will do a repeated start, and then read the I2C memory
mp_hal_i2c_read(self, addr, dest, len);
return;
}

View File

@ -0,0 +1,80 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// Machine is the HAL for low-level, hardware accelerated functions. It is not
// meant to simplify APIs, its only meant to unify them so that other modules
// do not require port specific logic.
//
// This file defines core data structures for machine classes. They are port
// specific and passed through the Python layer untouched.
#ifndef __MICROPY_INCLUDED_ATMEL_SAMD_API_MACHINE_TYPES_H__
#define __MICROPY_INCLUDED_ATMEL_SAMD_API_MACHINE_TYPES_H__
// Don't reorder these includes because they are dependencies of adc_feature.h.
// They should really be included by adc_feature.h.
#include "compiler.h"
#include "asf/sam0/drivers/system/clock/gclk.h"
#include "asf/sam0/utils/cmsis/samd21/include/component/adc.h"
#include "asf/sam0/drivers/adc/adc_sam_d_r/adc_feature.h"
#include "asf/sam0/drivers/sercom/i2c/i2c_master.h"
#include "py/obj.h"
typedef struct {
Sercom *const sercom;
uint8_t pad;
uint32_t pinmux;
} pin_sercom_t;
typedef struct {
Tc *const tc;
Tcc *const tcc;
uint8_t channel;
uint8_t wave_output;
uint32_t pin;
uint32_t mux;
} pin_timer_t;
typedef struct {
mp_obj_base_t base;
qstr name;
uint32_t pin;
bool has_adc;
enum adc_positive_input adc_input;
pin_timer_t primary_timer;
pin_timer_t secondary_timer;
pin_sercom_t primary_sercom;
pin_sercom_t secondary_sercom;
} pin_obj_t;
typedef struct _machine_i2c_obj_t {
mp_obj_base_t base;
struct i2c_master_module i2c_master_instance;
} machine_i2c_obj_t;
#endif // __MICROPY_INCLUDED_ATMEL_SAMD_API_MACHINE_TYPES_H__

View File

@ -31,6 +31,8 @@
#include "py/obj.h"
#include "py/runtime.h"
#include "shared-bindings/modules/machine.h"
#include "modmachine_adc.h"
#include "modmachine_dac.h"
#include "modmachine_pin.h"
@ -38,11 +40,13 @@
#include "storage.h"
#if MICROPY_PY_MACHINE
// TODO(tannewt): Add the machine_ prefix to all types so that we don't risk
// conflicting with any port specific implementations.
STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) },
{ MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&adc_type) },
{ MP_ROM_QSTR(MP_QSTR_DAC), MP_ROM_PTR(&dac_type) },
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_i2c_type) },
{ MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pin_type) },
{ MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_PTR(&pwm_type) },
{ MP_ROM_QSTR(MP_QSTR_Flash), MP_ROM_PTR(&flash_type) },

View File

@ -34,71 +34,50 @@
#include "asf/sam0/utils/cmsis/samd21/include/component/adc.h"
#include "asf/sam0/drivers/adc/adc_sam_d_r/adc_feature.h"
#include "machine_types.h"
#define SERCOM(p_sercom, p_pad, p_pinmux) \
{ \
.sercom = p_sercom, \
.pad = p_pad, \
.pinmux = p_pinmux \
}
#define NO_SERCOM SERCOM(0, 0, 0)
#define TIMER(p_tc, p_tcc, p_channel, p_wave_output, p_pin, p_mux) \
{ \
.tc = p_tc, \
.tcc = p_tcc, \
.channel = p_channel, \
.wave_output = p_wave_output, \
.pin = p_pin, \
.mux = p_mux \
}
#define NO_TIMER TIMER(0, 0, 0, 0, 0, 0)
// This macro is used to simplify pin definition in boards/<board>/pins.c
#define PIN_TWO_TIMERS(p_name, p_has_adc, p_adc_input, p_primary_tc, p_primary_tcc, \
p_primary_channel, p_primary_wave_output, p_primary_pin, p_primary_mux, \
p_secondary_tc, p_secondary_tcc, p_secondary_channel, p_secondary_wave_output, \
p_secondary_pin, p_secondary_mux) \
#define PIN(p_name, p_has_adc, p_adc_input, p_primary_timer, \
p_secondary_timer, p_primary_sercom, p_secondary_sercom) \
const pin_obj_t pin_## p_name = { \
{ &pin_type }, \
.name = MP_QSTR_ ## p_name, \
.pin = (PIN_## p_name), \
.has_adc = p_has_adc, \
.adc_input = p_adc_input, \
.primary_timer = { \
.tc = p_primary_tc, \
.tcc = p_primary_tcc, \
.channel = p_primary_channel, \
.wave_output = p_primary_wave_output, \
.pin = p_primary_pin, \
.mux = p_primary_mux \
}, \
.secondary_timer = { \
.tc = p_secondary_tc, \
.tcc = p_secondary_tcc, \
.channel = p_secondary_channel, \
.wave_output = p_secondary_wave_output, \
.pin = p_secondary_pin, \
.mux = p_secondary_mux \
} \
.primary_timer = p_primary_timer, \
.secondary_timer = p_secondary_timer, \
.primary_sercom = p_primary_sercom, \
.secondary_sercom = p_secondary_sercom \
}
#define PIN_NO_TIMERS_(p_name, p_has_adc, p_adc_input) \
PIN_TWO_TIMERS(p_name, p_has_adc, p_adc_input, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
#define PIN_ONE_TIMER_(p_name, p_has_adc, p_adc_input, p_primary_tcc, \
p_primary_tc, p_primary_channel, p_primary_wave_output, \
p_primary_pin, p_primary_mux) \
PIN_TWO_TIMERS(p_name, p_has_adc, p_adc_input, p_primary_tcc, p_primary_tc, \
p_primary_channel, p_primary_wave_output, p_primary_pin, p_primary_mux, \
0, 0, 0, 0, 0, 0)
#define NO_ADC_INPUT (0)
#include "mpconfigport.h"
#include "py/obj.h"
typedef struct {
Tc *const tc;
Tcc *const tcc;
uint8_t channel;
uint8_t wave_output;
uint32_t pin;
uint32_t mux;
} pin_timer_t;
typedef struct {
mp_obj_base_t base;
qstr name;
uint32_t pin;
bool has_adc;
enum adc_positive_input adc_input;
pin_timer_t primary_timer;
pin_timer_t secondary_timer;
} pin_obj_t;
extern const mp_obj_type_t pin_type;
typedef struct {

View File

@ -33,22 +33,22 @@
#define MICROPY_PY_BUILTINS_BYTEARRAY (1)
#define MICROPY_PY_BUILTINS_MEMORYVIEW (1)
#define MICROPY_PY_BUILTINS_ENUMERATE (0)
#define MICROPY_PY_BUILTINS_FILTER (0)
#define MICROPY_PY_BUILTINS_FILTER (1)
#define MICROPY_PY_BUILTINS_FROZENSET (0)
#define MICROPY_PY_BUILTINS_REVERSED (0)
#define MICROPY_PY_BUILTINS_SET (0)
#define MICROPY_PY_BUILTINS_SLICE (0)
#define MICROPY_PY_BUILTINS_PROPERTY (0)
#define MICROPY_PY_BUILTINS_MIN_MAX (0)
#define MICROPY_PY___FILE__ (0)
#define MICROPY_PY_GC (0)
#define MICROPY_PY_BUILTINS_SET (1)
#define MICROPY_PY_BUILTINS_SLICE (1)
#define MICROPY_PY_BUILTINS_PROPERTY (1)
#define MICROPY_PY_BUILTINS_MIN_MAX (1)
#define MICROPY_PY___FILE__ (1)
#define MICROPY_PY_GC (1)
#define MICROPY_PY_ARRAY (1)
#define MICROPY_PY_ATTRTUPLE (1)
#define MICROPY_PY_COLLECTIONS (0)
#define MICROPY_PY_MATH (0)
#define MICROPY_PY_CMATH (0)
#define MICROPY_PY_COLLECTIONS (1)
#define MICROPY_PY_MATH (1)
#define MICROPY_PY_CMATH (1)
#define MICROPY_PY_IO (0)
#define MICROPY_PY_STRUCT (0)
#define MICROPY_PY_STRUCT (1)
#define MICROPY_PY_SYS (0)
#define MICROPY_MODULE_FROZEN_MPY (1)
#define MICROPY_CPYTHON_COMPAT (0)

View File

@ -0,0 +1,285 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file contains all of the Python API definitions for the machine module.
// Machine is the HAL for low-level, hardware accelerated functions. It is not
// meant to simplify APIs, its only meant to unify them so that other modules
// do not require port specific logic.
#include "machine.h"
#include "py/runtime.h"
//| .. currentmodule:: machine
//|
//| class I2C -- a two-wire serial protocol
//| =======================================
//|
//| I2C is a two-wire protocol for communicating between devices. At the
//| physical level it consists of 2 wires: SCL and SDA, the clock and data lines
//| respectively.
//|
//| I2C objects are created attached to a specific bus. They can be initialised
//| when created, or initialised later on.
STATIC void machine_i2c_obj_init_helper(machine_i2c_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_scl, ARG_sda, ARG_freq };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_scl, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_sda, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// TODO(tannewt): Replace pin_find with a unified version.
const pin_obj_t* scl = pin_find(args[ARG_scl].u_obj);
const pin_obj_t* sda = pin_find(args[ARG_sda].u_obj);
mp_hal_i2c_init(self, scl, sda, args[ARG_freq].u_int);
}
//| Constructors
//| ------------
//| .. class:: I2C(scl, sda, \*, freq=400000)
//|
//| Construct and return a new I2C object.
//| See the init method below for a description of the arguments.
STATIC mp_obj_t machine_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, MP_OBJ_FUN_ARGS_MAX, true);
machine_i2c_obj_t *self = m_new_obj(machine_i2c_obj_t);
self->base.type = &machine_i2c_type;
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
machine_i2c_obj_init_helper(self, n_args, args, &kw_args);
return (mp_obj_t)self;
}
//| General Methods
//| ---------------
//| .. method:: I2C.init(scl, sda, \*, freq=400000)
//|
//| Initialise the I2C bus with the given arguments:
//|
//| - `scl` is a pin object for the SCL line
//| - `sda` is a pin object for the SDA line
//| - `freq` is the SCL clock rate
STATIC mp_obj_t machine_i2c_obj_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
machine_i2c_obj_init_helper(args[0], n_args - 1, args + 1, kw_args);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_init_obj, 1, machine_i2c_obj_init);
//| .. method:: I2C.scan()
//|
//| Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of
//| those that respond. A device responds if it pulls the SDA line low after
//| its address (including a read bit) is sent on the bus.
STATIC mp_obj_t machine_i2c_scan(mp_obj_t self_in) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_t list = mp_obj_new_list(0, NULL);
// 7-bit addresses 0b0000xxx and 0b1111xxx are reserved
for (int addr = 0x08; addr < 0x78; ++addr) {
bool success = mp_hal_i2c_probe(self, addr);
if (success) {
mp_obj_list_append(list, MP_OBJ_NEW_SMALL_INT(addr));
}
}
return list;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_scan_obj, machine_i2c_scan);
//| Standard bus operations
//| -----------------------
//|
//| The following methods implement the standard I2C master read and write
//| operations that target a given slave device.
//|
//| .. method:: I2C.readfrom(addr, nbytes)
//|
//| Read `nbytes` from the slave specified by `addr`.
//| Returns a `bytes` object with the data read.
STATIC mp_obj_t machine_i2c_readfrom(mp_obj_t self_in, mp_obj_t addr_in, mp_obj_t nbytes_in) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
vstr_t vstr;
vstr_init_len(&vstr, mp_obj_get_int(nbytes_in));
mp_hal_i2c_read(self, mp_obj_get_int(addr_in), (uint8_t*)vstr.buf, vstr.len);
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
MP_DEFINE_CONST_FUN_OBJ_3(machine_i2c_readfrom_obj, machine_i2c_readfrom);
//| .. method:: I2C.readfrom_into(addr, buf)
//|
//| Read into `buf` from the slave specified by `addr`.
//| The number of bytes read will be the length of `buf`.
//|
//| On WiPy the return value is the number of bytes read. Otherwise the
//| return value is `None`.
STATIC mp_obj_t machine_i2c_readfrom_into(mp_obj_t self_in, mp_obj_t addr_in, mp_obj_t buf_in) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE);
mp_hal_i2c_read(self, mp_obj_get_int(addr_in), (uint8_t*)bufinfo.buf, bufinfo.len);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_3(machine_i2c_readfrom_into_obj, machine_i2c_readfrom_into);
//| .. method:: I2C.writeto(addr, buf)
//|
//| Write the bytes from `buf` to the slave specified by `addr`.
STATIC mp_obj_t machine_i2c_writeto(mp_obj_t self_in, mp_obj_t addr_in, mp_obj_t buf_in) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
mp_hal_i2c_write(self, mp_obj_get_int(addr_in), bufinfo.buf, bufinfo.len);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(machine_i2c_writeto_obj, machine_i2c_writeto);
//| Memory operations
//| -----------------
//|
//| Some I2C devices act as a memory device (or set of registers) that can be
//| read from and written to. In this case there are two addresses associated
//| with an I2C transaction: the slave address and the memory address. The following
//| following methods are convenience functions to communicate with such
//| devices.
//|
//| .. method:: I2C.readfrom_mem(addr, memaddr, nbytes, \*, addrsize=8)
//|
//| Read `nbytes` from the slave specified by `addr` starting from the memory
//| address specified by `memaddr`.
//| The argument `addrsize` specifies the address size in bits (on ESP8266
//| this argument is not recognised and the address size is always 8 bits).
//| Returns a `bytes` object with the data read.
STATIC mp_obj_t machine_i2c_readfrom_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_addr, ARG_memaddr, ARG_n, ARG_addrsize };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_n, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
//{ MP_QSTR_addrsize, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, TODO
};
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// create the buffer to store data into
vstr_t vstr;
vstr_init_len(&vstr, args[ARG_n].u_int);
// do the transfer
mp_hal_i2c_read_mem(self, args[ARG_addr].u_int, args[ARG_memaddr].u_int, (uint8_t*)vstr.buf, vstr.len);
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_obj, 1, machine_i2c_readfrom_mem);
//| .. method:: I2C.readfrom_mem_into(addr, memaddr, buf, \*, addrsize=8)
//|
//| Read into `buf` from the slave specified by `addr` starting from the
//| memory address specified by `memaddr`. The number of bytes read is the
//| length of `buf`.
//| The argument `addrsize` specifies the address size in bits (on ESP8266
//| this argument is not recognised and the address size is always 8 bits).
//|
//| On WiPy the return value is the number of bytes read. Otherwise the
//| return value is `None`.
STATIC mp_obj_t machine_i2c_readfrom_mem_into(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_buf, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
//{ MP_QSTR_addrsize, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, TODO
};
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to store data into
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_WRITE);
// do the transfer
mp_hal_i2c_read_mem(self, args[ARG_addr].u_int, args[ARG_memaddr].u_int, bufinfo.buf, bufinfo.len);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_into_obj, 1, machine_i2c_readfrom_mem_into);
//| .. method:: I2C.writeto_mem(addr, memaddr, buf, \*, addrsize=8)
//|
//| Write `buf` to the slave specified by `addr` starting from the
//| memory address specified by `memaddr`.
//| The argument `addrsize` specifies the address size in bits (on ESP8266
//| this argument is not recognised and the address size is always 8 bits).
//|
//| On WiPy the return value is the number of bytes written. Otherwise the
//| return value is `None`.
STATIC mp_obj_t machine_i2c_writeto_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_buf, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
//{ MP_QSTR_addrsize, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, TODO
};
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to write the data from
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_READ);
// do the transfer
mp_hal_i2c_write_mem(self, args[ARG_addr].u_int, args[ARG_memaddr].u_int, bufinfo.buf, bufinfo.len);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_writeto_mem_obj, 1, machine_i2c_writeto_mem);
STATIC const mp_rom_map_elem_t machine_i2c_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2c_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&machine_i2c_scan_obj) },
// standard bus operations
{ MP_ROM_QSTR(MP_QSTR_readfrom), MP_ROM_PTR(&machine_i2c_readfrom_obj) },
{ MP_ROM_QSTR(MP_QSTR_readfrom_into), MP_ROM_PTR(&machine_i2c_readfrom_into_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeto), MP_ROM_PTR(&machine_i2c_writeto_obj) },
// memory operations
{ MP_ROM_QSTR(MP_QSTR_readfrom_mem), MP_ROM_PTR(&machine_i2c_readfrom_mem_obj) },
{ MP_ROM_QSTR(MP_QSTR_readfrom_mem_into), MP_ROM_PTR(&machine_i2c_readfrom_mem_into_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeto_mem), MP_ROM_PTR(&machine_i2c_writeto_mem_obj) },
};
STATIC MP_DEFINE_CONST_DICT(machine_i2c_locals_dict, machine_i2c_locals_dict_table);
const mp_obj_type_t machine_i2c_type = {
{ &mp_type_type },
.name = MP_QSTR_I2C,
.make_new = machine_i2c_make_new,
.locals_dict = (mp_obj_dict_t*)&machine_i2c_locals_dict,
};

View File

@ -0,0 +1,77 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// Machine is the HAL for low-level, hardware accelerated functions. It is not
// meant to simplify APIs, its only meant to unify them so that other modules
// do not require port specific logic.
//
// This file includes externs for all functions a port should implement to
// support the machine module.
#ifndef __MICROPY_INCLUDED_API_MACHINE_H__
#define __MICROPY_INCLUDED_API_MACHINE_H__
#include "py/obj.h"
// Should include these structs which will be passed through to the port
// implementation:
// * pin_obj_t
// * machine_i2c_obj_t
// TODO(tannewt): Standardize the type names.
#include "machine_types.h"
#include "modmachine_pin.h"
// Type object used in Python. Should be shared between ports.
extern const mp_obj_type_t machine_i2c_type;
// Initializes the hardware peripheral.
extern void mp_hal_i2c_init(machine_i2c_obj_t *self, const pin_obj_t * scl,
const pin_obj_t * sda, uint32_t freq);
// Probe the bus to see if a device acknowledges the given address.
extern bool mp_hal_i2c_probe(machine_i2c_obj_t *self, uint8_t addr);
// Reads memory of the i2c device picking up where it left off.
extern void mp_hal_i2c_read(machine_i2c_obj_t *self, uint8_t addr,
uint8_t *data, size_t len);
// Reads memory of the i2c device starting at memaddr.
extern void mp_hal_i2c_read_mem(machine_i2c_obj_t *self, uint8_t addr,
uint16_t memaddr, uint8_t *dest, size_t len);
extern void mp_hal_i2c_write(machine_i2c_obj_t *self, uint8_t addr,
uint8_t *data, size_t len);
// Writes memory of the i2c device starting at memaddr.
extern void mp_hal_i2c_write_mem(machine_i2c_obj_t *self, uint8_t addr,
uint16_t memaddr, const uint8_t *src,
size_t len);
#endif // __MICROPY_INCLUDED_API_MACHINE_H__