circuitpython/shared-bindings/audiobusio/PDMIn.c

228 lines
9.4 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include "lib/utils/context_manager_helpers.h"
#include "py/binary.h"
#include "py/objproperty.h"
#include "py/runtime.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/audiobusio/PDMIn.h"
//| .. currentmodule:: audiobusio
//|
//| :class:`PDMIn` -- Record an input PDM audio stream
//| ========================================================
//|
//| PDMIn can be used to record an input audio signal on a given set of pins.
//|
//| .. class:: PDMIn(clock_pin, data_pin, \*, frequency=8000, bit_depth=8, mono=True, oversample=64)
//|
//| Create a PDMIn object associated with the given pins. This allows you to
//| record audio signals from the given pins. Individual ports may put further
//| restrictions on the recording parameters.
//|
//| :param ~microcontroller.Pin clock_pin: The pin to output the clock to
//| :param ~microcontroller.Pin data_pin: The pin to read the data from
//| :param int frequency: Target frequency of the resulting samples. Check `frequency` for real value.
//| :param int bit_depth: Final number of bits per sample. Must be divisible by 8
//| :param bool mono: True when capturing a single channel of audio, captures two channels otherwise
//| :param int oversample: Number of single bit samples to decimate into a final sample. Must be divisible by 8
//|
//| Record 8-bit unsigned samples to buffer::
//|
//| import audiobusio
//| import board
//|
//| # Prep a buffer to record into
//| b = bytearray(200)
//| with audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA) as mic:
//| mic.record(b, len(b))
//|
//| Record 16-bit unsigned samples to buffer::
//|
//| import audiobusio
//| import board
//|
//| # Prep a buffer to record into. The array interface doesn't allow for
//| # constructing with a set size so we append to it until we have the size
//| # we want.
//| b = array.array("H")
//| for i in range(200):
//| b.append(0)
//| with audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA, bit_depth=16) as mic:
//| mic.record(b, len(b))
//|
STATIC mp_obj_t audiobusio_pdmin_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *pos_args) {
enum { ARG_frequency, ARG_bit_depth, ARG_mono, ARG_oversample };
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, pos_args + n_args);
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_frequency, MP_ARG_INT, {.u_int = 8000} },
{ MP_QSTR_bit_depth, MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_mono, MP_ARG_BOOL,{.u_bool = true} },
{ MP_QSTR_oversample, MP_ARG_INT, {.u_int = 64} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 2, pos_args + 2, &kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t clock_pin_obj = pos_args[0];
assert_pin(clock_pin_obj, false);
const mcu_pin_obj_t *clock_pin = MP_OBJ_TO_PTR(clock_pin_obj);
assert_pin_free(clock_pin);
mp_obj_t data_pin_obj = pos_args[1];
assert_pin(data_pin_obj, false);
const mcu_pin_obj_t *data_pin = MP_OBJ_TO_PTR(data_pin_obj);
assert_pin_free(data_pin);
// create PDMIn object from the given pin
audiobusio_pdmin_obj_t *self = m_new_obj(audiobusio_pdmin_obj_t);
self->base.type = &audiobusio_pdmin_type;
uint32_t frequency = args[ARG_frequency].u_int;
uint8_t bit_depth = args[ARG_bit_depth].u_int;
if (bit_depth % 8 != 0) {
mp_raise_ValueError("Bit depth must be multiple of 8.");
}
uint8_t oversample = args[ARG_oversample].u_int;
if (oversample % 8 != 0) {
mp_raise_ValueError("Oversample must be multiple of 8.");
}
bool mono = args[ARG_mono].u_bool;
common_hal_audiobusio_pdmin_construct(self, clock_pin, data_pin, frequency,
bit_depth, mono, oversample);
return MP_OBJ_FROM_PTR(self);
}
//| .. method:: deinit()
//|
//| Deinitialises the PWMOut and releases any hardware resources for reuse.
//|
STATIC mp_obj_t audiobusio_pdmin_deinit(mp_obj_t self_in) {
audiobusio_pdmin_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_audiobusio_pdmin_deinit(self);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(audiobusio_pdmin_deinit_obj, audiobusio_pdmin_deinit);
//| .. method:: __enter__()
//|
//| No-op used by Context Managers.
//|
// Provided by context manager helper.
//| .. method:: __exit__()
//|
//| Automatically deinitializes the hardware when exiting a context.
//|
STATIC mp_obj_t audiobusio_pdmin_obj___exit__(size_t n_args, const mp_obj_t *args) {
(void)n_args;
common_hal_audiobusio_pdmin_deinit(args[0]);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(audiobusio_pdmin___exit___obj, 4, 4, audiobusio_pdmin_obj___exit__);
//| .. method:: record(destination, destination_length)
//|
//| Records destination_length bytes of samples to destination. This is
//| blocking.
//|
//| An IOError may be raised when the destination is too slow to record the
//| audio at the given rate. For internal flash, writing all 1s to the file
//| before recording is recommended to speed up writes.
//|
STATIC mp_obj_t audiobusio_pdmin_obj_record(mp_obj_t self_obj, mp_obj_t destination, mp_obj_t destination_length) {
audiobusio_pdmin_obj_t *self = MP_OBJ_TO_PTR(self_obj);
if (!MP_OBJ_IS_SMALL_INT(destination_length)) {
mp_raise_TypeError("destination_length must be int");
}
uint32_t length = MP_OBJ_SMALL_INT_VALUE(destination_length);
mp_buffer_info_t bufinfo;
if (MP_OBJ_IS_TYPE(destination, &fatfs_type_fileio)) {
mp_raise_NotImplementedError("");
} else if (mp_get_buffer(destination, &bufinfo, MP_BUFFER_WRITE)) {
if (bufinfo.len < length) {
mp_raise_ValueError("Target buffer cannot hold destination_length bytes.");
}
uint8_t bit_depth = common_hal_audiobusio_pdmin_get_bit_depth(self);
if (bufinfo.typecode != 'H' && bit_depth == 16) {
mp_raise_ValueError("destination buffer must be an array of type 'H' for bit_depth = 16");
} else if (bufinfo.typecode != 'B' && bufinfo.typecode != BYTEARRAY_TYPECODE && bit_depth == 8) {
mp_raise_ValueError("destination buffer must be a bytearray or array of type 'B' for bit_depth = 8");
}
length *= bit_depth / 8;
uint32_t length_written =
common_hal_audiobusio_pdmin_record_to_buffer(self, bufinfo.buf, length);
if (length_written != length) {
mp_printf(&mp_plat_print, "length mismatch %d %d\n", length_written, length);
}
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_3(audiobusio_pdmin_record_obj, audiobusio_pdmin_obj_record);
//| .. attribute:: frequency
//|
//| The actual frequency of the recording. This may not match the constructed
//| frequency due to internal clock limitations.
//|
STATIC mp_obj_t audiobusio_pdmin_obj_get_frequency(mp_obj_t self_in) {
audiobusio_pdmin_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(common_hal_audiobusio_pdmin_get_frequency(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(audiobusio_pdmin_get_frequency_obj, audiobusio_pdmin_obj_get_frequency);
const mp_obj_property_t audiobusio_pdmin_frequency_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&audiobusio_pdmin_get_frequency_obj,
(mp_obj_t)&mp_const_none_obj,
(mp_obj_t)&mp_const_none_obj},
};
STATIC const mp_rom_map_elem_t audiobusio_pdmin_locals_dict_table[] = {
// Methods
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&audiobusio_pdmin_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) },
{ MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&audiobusio_pdmin___exit___obj) },
{ MP_ROM_QSTR(MP_QSTR_record), MP_ROM_PTR(&audiobusio_pdmin_record_obj) },
{ MP_ROM_QSTR(MP_QSTR_frequency), MP_ROM_PTR(&audiobusio_pdmin_frequency_obj) }
};
STATIC MP_DEFINE_CONST_DICT(audiobusio_pdmin_locals_dict, audiobusio_pdmin_locals_dict_table);
const mp_obj_type_t audiobusio_pdmin_type = {
{ &mp_type_type },
.name = MP_QSTR_PDMIn,
.make_new = audiobusio_pdmin_make_new,
.locals_dict = (mp_obj_dict_t*)&audiobusio_pdmin_locals_dict,
};