590 lines
21 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/runtime.h"
#include "py/mphal.h"
#include "lib/oofatfs/ff.h"
#include "extmod/vfs_fat.h"
#include "sdcard.h"
#include "pin.h"
2014-09-09 16:09:07 +02:00
#include "bufhelper.h"
#include "dma.h"
#include "irq.h"
#if MICROPY_HW_HAS_SDCARD
2018-03-24 21:23:35 +02:00
#if defined(STM32F7) || defined(STM32H7) || defined(STM32L4)
// The F7 has 2 SDMMC units but at the moment we only support using one of them in
// a given build. If a boards config file defines MICROPY_HW_SDMMC2_CK then SDMMC2
// is used, otherwise SDMMC1 is used.
#if defined(MICROPY_HW_SDMMC2_CK)
#define SDIO SDMMC2
#define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC2_CLK_ENABLE()
#define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC2_CLK_DISABLE()
#define SDMMC_IRQn SDMMC2_IRQn
#define SDMMC_TX_DMA dma_SDMMC_2_TX
#define SDMMC_RX_DMA dma_SDMMC_2_RX
#else
#define SDIO SDMMC1
#define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC1_CLK_ENABLE()
#define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC1_CLK_DISABLE()
#define SDMMC_IRQn SDMMC1_IRQn
#define SDMMC_TX_DMA dma_SDIO_0_TX
#define SDMMC_RX_DMA dma_SDIO_0_RX
#endif
2016-06-29 12:26:43 +01:00
// The F7 & L4 series calls the peripheral SDMMC rather than SDIO, so provide some
// #defines for backwards compatability.
#define SDIO_CLOCK_EDGE_RISING SDMMC_CLOCK_EDGE_RISING
#define SDIO_CLOCK_EDGE_FALLING SDMMC_CLOCK_EDGE_FALLING
#define SDIO_CLOCK_BYPASS_DISABLE SDMMC_CLOCK_BYPASS_DISABLE
#define SDIO_CLOCK_BYPASS_ENABLE SDMMC_CLOCK_BYPASS_ENABLE
#define SDIO_CLOCK_POWER_SAVE_DISABLE SDMMC_CLOCK_POWER_SAVE_DISABLE
#define SDIO_CLOCK_POWER_SAVE_ENABLE SDMMC_CLOCK_POWER_SAVE_ENABLE
#define SDIO_BUS_WIDE_1B SDMMC_BUS_WIDE_1B
#define SDIO_BUS_WIDE_4B SDMMC_BUS_WIDE_4B
#define SDIO_BUS_WIDE_8B SDMMC_BUS_WIDE_8B
#define SDIO_HARDWARE_FLOW_CONTROL_DISABLE SDMMC_HARDWARE_FLOW_CONTROL_DISABLE
#define SDIO_HARDWARE_FLOW_CONTROL_ENABLE SDMMC_HARDWARE_FLOW_CONTROL_ENABLE
2018-03-24 21:23:35 +02:00
#if defined(STM32H7)
#define GPIO_AF12_SDIO GPIO_AF12_SDIO1
#define SDIO_IRQHandler SDMMC1_IRQHandler
#define SDIO_TRANSFER_CLK_DIV SDMMC_NSpeed_CLK_DIV
#define SDIO_USE_GPDMA 0
#else
#define SDIO_TRANSFER_CLK_DIV SDMMC_TRANSFER_CLK_DIV
2018-03-24 21:23:35 +02:00
#define SDIO_USE_GPDMA 1
#endif
#else
// These are definitions for F4 MCUs so there is a common macro across all MCUs.
#define SDMMC_CLK_ENABLE() __SDIO_CLK_ENABLE()
#define SDMMC_CLK_DISABLE() __SDIO_CLK_DISABLE()
#define SDMMC_IRQn SDIO_IRQn
#define SDMMC_TX_DMA dma_SDIO_0_TX
#define SDMMC_RX_DMA dma_SDIO_0_RX
2018-03-24 21:23:35 +02:00
#define SDIO_USE_GPDMA 1
#endif
// If no custom SDIO pins defined, use the default ones
#ifndef MICROPY_HW_SDMMC_CK
#define MICROPY_HW_SDMMC_D0 (pin_C8)
#define MICROPY_HW_SDMMC_D1 (pin_C9)
#define MICROPY_HW_SDMMC_D2 (pin_C10)
#define MICROPY_HW_SDMMC_D3 (pin_C11)
#define MICROPY_HW_SDMMC_CK (pin_C12)
#define MICROPY_HW_SDMMC_CMD (pin_D2)
#endif
// TODO: Since SDIO is fundamentally half-duplex, we really only need to
// tie up one DMA channel. However, the HAL DMA API doesn't
// seem to provide a convenient way to change the direction. I believe that
// its as simple as changing the CR register and the Init.Direction field
// and make DMA_SetConfig public.
// TODO: I think that as an optimization, we can allocate these dynamically
// if an sd card is detected. This will save approx 260 bytes of RAM
// when no sdcard was being used.
static SD_HandleTypeDef sd_handle;
2018-03-24 21:23:35 +02:00
#if SDIO_USE_GPDMA
static DMA_HandleTypeDef sd_rx_dma, sd_tx_dma;
2018-03-24 21:23:35 +02:00
#endif
void sdcard_init(void) {
// invalidate the sd_handle
sd_handle.Instance = NULL;
// configure SD GPIO
// we do this here an not in HAL_SD_MspInit because it apparently
// makes it more robust to have the pins always pulled high
// Note: the mp_hal_pin_config function will configure the GPIO in
// fast mode which can do up to 50MHz. This should be plenty for SDIO
// which clocks up to 25MHz maximum.
#if defined(MICROPY_HW_SDMMC2_CK)
// Use SDMMC2 peripheral with pins provided by the board's config
mp_hal_pin_config_alt(MICROPY_HW_SDMMC2_CK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
mp_hal_pin_config_alt(MICROPY_HW_SDMMC2_CMD, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
mp_hal_pin_config_alt(MICROPY_HW_SDMMC2_D0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
mp_hal_pin_config_alt(MICROPY_HW_SDMMC2_D1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
mp_hal_pin_config_alt(MICROPY_HW_SDMMC2_D2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
mp_hal_pin_config_alt(MICROPY_HW_SDMMC2_D3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
#else
// Default SDIO/SDMMC1 config
mp_hal_pin_config(MICROPY_HW_SDMMC_D0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
mp_hal_pin_config(MICROPY_HW_SDMMC_D1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
mp_hal_pin_config(MICROPY_HW_SDMMC_D2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
mp_hal_pin_config(MICROPY_HW_SDMMC_D3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
mp_hal_pin_config(MICROPY_HW_SDMMC_CK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
mp_hal_pin_config(MICROPY_HW_SDMMC_CMD, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
#endif
// configure the SD card detect pin
// we do this here so we can detect if the SD card is inserted before powering it on
mp_hal_pin_config(MICROPY_HW_SDCARD_DETECT_PIN, MP_HAL_PIN_MODE_INPUT, MICROPY_HW_SDCARD_DETECT_PULL, 0);
}
void HAL_SD_MspInit(SD_HandleTypeDef *hsd) {
// enable SDIO clock
SDMMC_CLK_ENABLE();
2018-03-24 21:23:35 +02:00
#if defined(STM32H7)
// Reset SDMMC
__HAL_RCC_SDMMC1_FORCE_RESET();
__HAL_RCC_SDMMC1_RELEASE_RESET();
#endif
// NVIC configuration for SDIO interrupts
NVIC_SetPriority(SDMMC_IRQn, IRQ_PRI_SDIO);
HAL_NVIC_EnableIRQ(SDMMC_IRQn);
// GPIO have already been initialised by sdcard_init
}
void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) {
HAL_NVIC_DisableIRQ(SDMMC_IRQn);
SDMMC_CLK_DISABLE();
}
bool sdcard_is_present(void) {
return HAL_GPIO_ReadPin(MICROPY_HW_SDCARD_DETECT_PIN->gpio, MICROPY_HW_SDCARD_DETECT_PIN->pin_mask) == MICROPY_HW_SDCARD_DETECT_PRESENT;
}
bool sdcard_power_on(void) {
if (!sdcard_is_present()) {
return false;
}
if (sd_handle.Instance) {
return true;
}
// SD device interface configuration
sd_handle.Instance = SDIO;
sd_handle.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
2018-03-24 21:23:35 +02:00
#ifndef STM32H7
sd_handle.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
2018-03-24 21:23:35 +02:00
#endif
sd_handle.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_ENABLE;
sd_handle.Init.BusWide = SDIO_BUS_WIDE_1B;
sd_handle.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
sd_handle.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV;
// init the SD interface, with retry if it's not ready yet
for (int retry = 10; HAL_SD_Init(&sd_handle) != HAL_OK; retry--) {
if (retry == 0) {
goto error;
}
mp_hal_delay_ms(50);
}
// configure the SD bus width for wide operation
#if defined(STM32F7)
// use maximum SDMMC clock speed on F7 MCUs
sd_handle.Init.ClockBypass = SDMMC_CLOCK_BYPASS_ENABLE;
#endif
if (HAL_SD_ConfigWideBusOperation(&sd_handle, SDIO_BUS_WIDE_4B) != HAL_OK) {
HAL_SD_DeInit(&sd_handle);
goto error;
}
return true;
error:
sd_handle.Instance = NULL;
return false;
}
void sdcard_power_off(void) {
if (!sd_handle.Instance) {
return;
}
HAL_SD_DeInit(&sd_handle);
sd_handle.Instance = NULL;
}
uint64_t sdcard_get_capacity_in_bytes(void) {
if (sd_handle.Instance == NULL) {
return 0;
}
HAL_SD_CardInfoTypeDef cardinfo;
HAL_SD_GetCardInfo(&sd_handle, &cardinfo);
return (uint64_t)cardinfo.LogBlockNbr * (uint64_t)cardinfo.LogBlockSize;
}
#if !defined(MICROPY_HW_SDMMC2_CK)
void SDIO_IRQHandler(void) {
IRQ_ENTER(SDIO_IRQn);
HAL_SD_IRQHandler(&sd_handle);
IRQ_EXIT(SDIO_IRQn);
}
#endif
#if defined(STM32F7)
void SDMMC2_IRQHandler(void) {
IRQ_ENTER(SDMMC2_IRQn);
HAL_SD_IRQHandler(&sd_handle);
IRQ_EXIT(SDMMC2_IRQn);
}
#endif
STATIC HAL_StatusTypeDef sdcard_wait_finished(SD_HandleTypeDef *sd, uint32_t timeout) {
// Wait for HAL driver to be ready (eg for DMA to finish)
uint32_t start = HAL_GetTick();
for (;;) {
// Do an atomic check of the state; WFI will exit even if IRQs are disabled
uint32_t irq_state = disable_irq();
if (sd->State != HAL_SD_STATE_BUSY) {
enable_irq(irq_state);
break;
}
__WFI();
enable_irq(irq_state);
if (HAL_GetTick() - start >= timeout) {
return HAL_TIMEOUT;
}
}
// Wait for SD card to complete the operation
for (;;) {
HAL_SD_CardStateTypedef state = HAL_SD_GetCardState(sd);
if (state == HAL_SD_CARD_TRANSFER) {
return HAL_OK;
}
if (!(state == HAL_SD_CARD_SENDING || state == HAL_SD_CARD_RECEIVING || state == HAL_SD_CARD_PROGRAMMING)) {
return HAL_ERROR;
}
if (HAL_GetTick() - start >= timeout) {
return HAL_TIMEOUT;
}
__WFI();
}
return HAL_OK;
}
mp_uint_t sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return HAL_ERROR;
}
HAL_StatusTypeDef err = HAL_OK;
// check that dest pointer is aligned on a 4-byte boundary
uint8_t *orig_dest = NULL;
uint32_t saved_word;
if (((uint32_t)dest & 3) != 0) {
// Pointer is not aligned so it needs fixing.
// We could allocate a temporary block of RAM (as sdcard_write_blocks
// does) but instead we are going to use the dest buffer inplace. We
// are going to align the pointer, save the initial word at the aligned
// location, read into the aligned memory, move the memory back to the
// unaligned location, then restore the initial bytes at the aligned
// location. We should have no trouble doing this as those initial
// bytes at the aligned location should be able to be changed for the
// duration of this function call.
orig_dest = dest;
dest = (uint8_t*)((uint32_t)dest & ~3);
saved_word = *(uint32_t*)dest;
}
if (query_irq() == IRQ_STATE_ENABLED) {
// we must disable USB irqs to prevent MSC contention with SD card
uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
2018-03-24 21:23:35 +02:00
#if SDIO_USE_GPDMA
dma_init(&sd_rx_dma, &SDMMC_RX_DMA, &sd_handle);
sd_handle.hdmarx = &sd_rx_dma;
2018-03-24 21:23:35 +02:00
#endif
// make sure cache is flushed and invalidated so when DMA updates the RAM
// from reading the peripheral the CPU then reads the new data
MP_HAL_CLEANINVALIDATE_DCACHE(dest, num_blocks * SDCARD_BLOCK_SIZE);
err = HAL_SD_ReadBlocks_DMA(&sd_handle, dest, block_num, num_blocks);
if (err == HAL_OK) {
err = sdcard_wait_finished(&sd_handle, 60000);
}
2018-03-24 21:23:35 +02:00
#if SDIO_USE_GPDMA
dma_deinit(&SDMMC_RX_DMA);
sd_handle.hdmarx = NULL;
2018-03-24 21:23:35 +02:00
#endif
restore_irq_pri(basepri);
} else {
err = HAL_SD_ReadBlocks(&sd_handle, dest, block_num, num_blocks, 60000);
if (err == HAL_OK) {
err = sdcard_wait_finished(&sd_handle, 60000);
}
}
if (orig_dest != NULL) {
// move the read data to the non-aligned position, and restore the initial bytes
memmove(orig_dest, dest, num_blocks * SDCARD_BLOCK_SIZE);
memcpy(dest, &saved_word, orig_dest - dest);
}
return err;
}
mp_uint_t sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return HAL_ERROR;
}
HAL_StatusTypeDef err = HAL_OK;
// check that src pointer is aligned on a 4-byte boundary
if (((uint32_t)src & 3) != 0) {
// pointer is not aligned, so allocate a temporary block to do the write
uint8_t *src_aligned = m_new_maybe(uint8_t, SDCARD_BLOCK_SIZE);
if (src_aligned == NULL) {
return HAL_ERROR;
}
for (size_t i = 0; i < num_blocks; ++i) {
memcpy(src_aligned, src + i * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE);
err = sdcard_write_blocks(src_aligned, block_num + i, 1);
if (err != HAL_OK) {
break;
}
}
m_del(uint8_t, src_aligned, SDCARD_BLOCK_SIZE);
return err;
}
if (query_irq() == IRQ_STATE_ENABLED) {
// we must disable USB irqs to prevent MSC contention with SD card
uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
2018-03-24 21:23:35 +02:00
#if SDIO_USE_GPDMA
dma_init(&sd_tx_dma, &SDMMC_TX_DMA, &sd_handle);
sd_handle.hdmatx = &sd_tx_dma;
2018-03-24 21:23:35 +02:00
#endif
// make sure cache is flushed to RAM so the DMA can read the correct data
MP_HAL_CLEAN_DCACHE(src, num_blocks * SDCARD_BLOCK_SIZE);
err = HAL_SD_WriteBlocks_DMA(&sd_handle, (uint8_t*)src, block_num, num_blocks);
if (err == HAL_OK) {
err = sdcard_wait_finished(&sd_handle, 60000);
}
2018-03-24 21:23:35 +02:00
#if SDIO_USE_GPDMA
dma_deinit(&SDMMC_TX_DMA);
sd_handle.hdmatx = NULL;
2018-03-24 21:23:35 +02:00
#endif
restore_irq_pri(basepri);
} else {
err = HAL_SD_WriteBlocks(&sd_handle, (uint8_t*)src, block_num, num_blocks, 60000);
if (err == HAL_OK) {
err = sdcard_wait_finished(&sd_handle, 60000);
}
}
return err;
}
/******************************************************************************/
// MicroPython bindings
//
// Expose the SD card as an object with the block protocol.
// there is a singleton SDCard object
const mp_obj_base_t pyb_sdcard_obj = {&pyb_sdcard_type};
STATIC mp_obj_t pyb_sdcard_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return singleton object
return (mp_obj_t)&pyb_sdcard_obj;
}
STATIC mp_obj_t sd_present(mp_obj_t self) {
return mp_obj_new_bool(sdcard_is_present());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_present_obj, sd_present);
STATIC mp_obj_t sd_power(mp_obj_t self, mp_obj_t state) {
bool result;
if (mp_obj_is_true(state)) {
result = sdcard_power_on();
} else {
sdcard_power_off();
result = true;
}
return mp_obj_new_bool(result);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_power_obj, sd_power);
STATIC mp_obj_t sd_info(mp_obj_t self) {
if (sd_handle.Instance == NULL) {
return mp_const_none;
}
HAL_SD_CardInfoTypeDef cardinfo;
HAL_SD_GetCardInfo(&sd_handle, &cardinfo);
// cardinfo.SD_csd and cardinfo.SD_cid have lots of info but we don't use them
mp_obj_t tuple[3] = {
mp_obj_new_int_from_ull((uint64_t)cardinfo.LogBlockNbr * (uint64_t)cardinfo.LogBlockSize),
mp_obj_new_int_from_uint(cardinfo.LogBlockSize),
mp_obj_new_int(cardinfo.CardType),
};
return mp_obj_new_tuple(3, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_info_obj, sd_info);
// now obsolete, kept for backwards compatibility
STATIC mp_obj_t sd_read(mp_obj_t self, mp_obj_t block_num) {
uint8_t *dest = m_new(uint8_t, SDCARD_BLOCK_SIZE);
mp_uint_t ret = sdcard_read_blocks(dest, mp_obj_get_int(block_num), 1);
if (ret != 0) {
m_del(uint8_t, dest, SDCARD_BLOCK_SIZE);
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_read_blocks failed [%u]", ret));
}
return mp_obj_new_bytearray_by_ref(SDCARD_BLOCK_SIZE, dest);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_read_obj, sd_read);
// now obsolete, kept for backwards compatibility
STATIC mp_obj_t sd_write(mp_obj_t self, mp_obj_t block_num, mp_obj_t data) {
2014-09-09 16:09:07 +02:00
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_READ);
2014-09-09 16:09:07 +02:00
if (bufinfo.len % SDCARD_BLOCK_SIZE != 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "writes must be a multiple of %d bytes", SDCARD_BLOCK_SIZE));
2014-09-09 16:09:07 +02:00
}
mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
if (ret != 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_write_blocks failed [%u]", ret));
2014-09-09 16:09:07 +02:00
}
2014-09-09 16:09:07 +02:00
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(sd_write_obj, sd_write);
2014-09-09 16:09:07 +02:00
STATIC mp_obj_t pyb_sdcard_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = sdcard_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
return mp_obj_new_bool(ret == 0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_readblocks_obj, pyb_sdcard_readblocks);
STATIC mp_obj_t pyb_sdcard_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
return mp_obj_new_bool(ret == 0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_writeblocks_obj, pyb_sdcard_writeblocks);
STATIC mp_obj_t pyb_sdcard_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case BP_IOCTL_INIT:
if (!sdcard_power_on()) {
return MP_OBJ_NEW_SMALL_INT(-1); // error
}
return MP_OBJ_NEW_SMALL_INT(0); // success
case BP_IOCTL_DEINIT:
sdcard_power_off();
return MP_OBJ_NEW_SMALL_INT(0); // success
case BP_IOCTL_SYNC:
// nothing to do
return MP_OBJ_NEW_SMALL_INT(0); // success
case BP_IOCTL_SEC_COUNT:
return MP_OBJ_NEW_SMALL_INT(sdcard_get_capacity_in_bytes() / SDCARD_BLOCK_SIZE);
case BP_IOCTL_SEC_SIZE:
return MP_OBJ_NEW_SMALL_INT(SDCARD_BLOCK_SIZE);
default: // unknown command
return MP_OBJ_NEW_SMALL_INT(-1); // error
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_ioctl_obj, pyb_sdcard_ioctl);
STATIC const mp_rom_map_elem_t pyb_sdcard_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_present), MP_ROM_PTR(&sd_present_obj) },
{ MP_ROM_QSTR(MP_QSTR_power), MP_ROM_PTR(&sd_power_obj) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&sd_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&sd_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&sd_write_obj) },
// block device protocol
{ MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&pyb_sdcard_readblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&pyb_sdcard_writeblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&pyb_sdcard_ioctl_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_sdcard_locals_dict, pyb_sdcard_locals_dict_table);
const mp_obj_type_t pyb_sdcard_type = {
{ &mp_type_type },
.name = MP_QSTR_SDCard,
.make_new = pyb_sdcard_make_new,
.locals_dict = (mp_obj_dict_t*)&pyb_sdcard_locals_dict,
};
void sdcard_init_vfs(fs_user_mount_t *vfs, int part) {
vfs->base.type = &mp_fat_vfs_type;
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL;
vfs->fatfs.drv = vfs;
vfs->fatfs.part = part;
vfs->readblocks[0] = (mp_obj_t)&pyb_sdcard_readblocks_obj;
vfs->readblocks[1] = (mp_obj_t)&pyb_sdcard_obj;
vfs->readblocks[2] = (mp_obj_t)sdcard_read_blocks; // native version
vfs->writeblocks[0] = (mp_obj_t)&pyb_sdcard_writeblocks_obj;
vfs->writeblocks[1] = (mp_obj_t)&pyb_sdcard_obj;
vfs->writeblocks[2] = (mp_obj_t)sdcard_write_blocks; // native version
vfs->u.ioctl[0] = (mp_obj_t)&pyb_sdcard_ioctl_obj;
vfs->u.ioctl[1] = (mp_obj_t)&pyb_sdcard_obj;
}
#endif // MICROPY_HW_HAS_SDCARD