circuitpython/atmel-samd/common-hal/audioio/AudioOut.c

561 lines
21 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
Merge tag 'v1.9.1' Fixes for stmhal USB mass storage, lwIP bindings and VFS regressions This release provides an important fix for the USB mass storage device in the stmhal port by implementing the SCSI SYNCHRONIZE_CACHE command, which is now require by some Operating Systems. There are also fixes for the lwIP bindings to improve non-blocking sockets and error codes. The VFS has some regressions fixed including the ability to statvfs the root. All changes are listed below. py core: - modbuiltins: add core-provided version of input() function - objstr: catch case of negative "maxsplit" arg to str.rsplit() - persistentcode: allow to compile with complex numbers disabled - objstr: allow to compile with obj-repr D, and unicode disabled - modsys: allow to compile with obj-repr D and PY_ATTRTUPLE disabled - provide mp_decode_uint_skip() to help reduce stack usage - makeqstrdefs.py: make script run correctly with Python 2.6 - objstringio: if created from immutable object, follow copy on write policy extmod: - modlwip: connect: for non-blocking mode, return EINPROGRESS - modlwip: fix error codes for duplicate calls to connect() - modlwip: accept: fix error code for non-blocking mode - vfs: allow to statvfs the root directory - vfs: allow "buffering" and "encoding" args to VFS's open() - modframebuf: fix signed/unsigned comparison pendantic warning lib: - libm: use isfinite instead of finitef, for C99 compatibility - utils/interrupt_char: remove support for KBD_EXCEPTION disabled tests: - basics/string_rsplit: add tests for negative "maxsplit" argument - float: convert "sys.exit()" to "raise SystemExit" - float/builtin_float_minmax: PEP8 fixes - basics: convert "sys.exit()" to "raise SystemExit" - convert remaining "sys.exit()" to "raise SystemExit" unix port: - convert to use core-provided version of built-in import() - Makefile: replace references to make with $(MAKE) windows port: - convert to use core-provided version of built-in import() qemu-arm port: - Makefile: adjust object-file lists to get correct dependencies - enable micropython.mem_*() functions to allow more tests stmhal port: - boards: enable DAC for NUCLEO_F767ZI board - add support for NUCLEO_F446RE board - pass USB handler as parameter to allow more than one USB handler - usb: use local USB handler variable in Start-of-Frame handler - usb: make state for USB device private to top-level USB driver - usbdev: for MSC implement SCSI SYNCHRONIZE_CACHE command - convert from using stmhal's input() to core provided version cc3200 port: - convert from using stmhal's input() to core provided version teensy port: - convert from using stmhal's input() to core provided version esp8266 port: - Makefile: replace references to make with $(MAKE) - Makefile: add clean-modules target - convert from using stmhal's input() to core provided version zephyr port: - modusocket: getaddrinfo: Fix mp_obj_len() usage - define MICROPY_PY_SYS_PLATFORM (to "zephyr") - machine_pin: use native Zephyr types for Zephyr API calls docs: - machine.Pin: remove out_value() method - machine.Pin: add on() and off() methods - esp8266: consistently replace Pin.high/low methods with .on/off - esp8266/quickref: polish Pin.on()/off() examples - network: move confusingly-named cc3200 Server class to its reference - uos: deconditionalize, remove minor port-specific details - uos: move cc3200 port legacy VFS mounting functions to its ref doc - machine: sort machine classes in logical order, not alphabetically - network: first step to describe standard network class interface examples: - embedding: use core-provided KeyboardInterrupt object
2017-06-20 13:56:05 -04:00
#include "extmod/vfs_fat_file.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "common-hal/audioio/AudioOut.h"
#include "shared-bindings/audioio/AudioOut.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "asf/sam0/drivers/dac/dac.h"
#include "asf/sam0/drivers/dma/dma.h"
#include "asf/sam0/drivers/events/events.h"
#include "asf/sam0/drivers/port/port.h"
#include "asf/sam0/drivers/tc/tc.h"
#include "samd21_pins.h"
#include "shared_dma.h"
#undef ENABLE
// Shared with PWMOut
// TODO(tannewt): Factor these out so audioio can exist without PWMOut.
extern uint32_t target_timer_frequencies[TC_INST_NUM + TCC_INST_NUM];
extern uint8_t timer_refcount[TC_INST_NUM + TCC_INST_NUM];
extern const uint16_t prescaler[8];
// This timer is shared amongst all AudioOut objects under the assumption that
// the code is single threaded. The audioout_sample_timer, audioout_dac_instance,
// audioout_sample_event, and audioout_dac_event pointers live in
// MICROPY_PORT_ROOT_POINTERS so they don't get garbage collected.
// The AudioOut object is being currently played. Only it can pause the timer
// and change its frequency.
static audioio_audioout_obj_t* active_audioout;
static uint8_t refcount = 0;
struct wave_format_chunk {
uint16_t audio_format;
uint16_t num_channels;
uint32_t sample_rate;
uint32_t byte_rate;
uint16_t block_align;
uint16_t bits_per_sample;
uint16_t extra_params; // Assumed to be zero below.
};
void audioout_reset(void) {
// Only reset DMA. PWMOut will reset the timer. Other code will reset the DAC.
refcount = 0;
MP_STATE_VM(audioout_sample_timer) = NULL;
MP_STATE_VM(audiodma_block_counter) = NULL;
MP_STATE_VM(audioout_dac_instance) = NULL;
if (MP_STATE_VM(audioout_sample_event) != NULL) {
events_detach_user(MP_STATE_VM(audioout_sample_event), EVSYS_ID_USER_DAC_START);
events_release(MP_STATE_VM(audioout_sample_event));
}
MP_STATE_VM(audioout_sample_event) = NULL;
if (MP_STATE_VM(audiodma_block_event) != NULL) {
events_release(MP_STATE_VM(audiodma_block_event));
}
MP_STATE_VM(audiodma_block_event) = NULL;
if (MP_STATE_VM(audioout_dac_event) != NULL) {
events_detach_user(MP_STATE_VM(audioout_dac_event), EVSYS_ID_USER_DMAC_CH_0);
events_release(MP_STATE_VM(audioout_dac_event));
}
MP_STATE_VM(audioout_dac_event) = NULL;
dma_abort_job(&audio_dma);
}
// WARN(tannewt): DO NOT print from here. It calls background tasks and causes a
// stack overflow.
void audioout_background(void) {
if (MP_STATE_VM(audiodma_block_counter) != NULL &&
active_audioout != NULL &&
active_audioout->second_buffer != NULL &&
active_audioout->last_loaded_block < tc_get_count_value(MP_STATE_VM(audiodma_block_counter))) {
uint8_t* buffer;
if (tc_get_count_value(MP_STATE_VM(audiodma_block_counter)) % 2 == 1) {
buffer = active_audioout->buffer;
} else {
buffer = active_audioout->second_buffer;
}
uint16_t num_bytes_to_load = active_audioout->len;
if (num_bytes_to_load > active_audioout->bytes_remaining) {
num_bytes_to_load = active_audioout->bytes_remaining;
}
UINT length_read;
f_read(&active_audioout->file->fp, buffer, num_bytes_to_load, &length_read);
active_audioout->bytes_remaining -= length_read;
active_audioout->last_loaded_block += 1;
if (active_audioout->bytes_remaining == 0) {
if (active_audioout->loop) {
// Loop back to the start of the file.
f_lseek(&active_audioout->file->fp, active_audioout->data_start);
active_audioout->bytes_remaining = active_audioout->file_length;
f_read(&active_audioout->file->fp, buffer, active_audioout->len - num_bytes_to_load, &length_read);
active_audioout->bytes_remaining -= length_read;
} else {
DmacDescriptor* descriptor = audio_dma.descriptor;
if (buffer == active_audioout->second_buffer) {
descriptor = active_audioout->second_descriptor;
}
descriptor->BTCNT.reg = length_read / active_audioout->bytes_per_sample;
descriptor->SRCADDR.reg = ((uint32_t) buffer) + length_read;
descriptor->DESCADDR.reg = 0;
}
}
if (active_audioout->bytes_per_sample == 2) {
// Undo twos complement.
for (uint16_t i = 0; i < length_read / 2; i++) {
buffer[2 * i + 1] ^= 0x80;
}
}
}
}
static void shared_construct(audioio_audioout_obj_t* self, const mcu_pin_obj_t* pin) {
assert_pin_free(pin);
// Configure the DAC to output on input event and to output an empty event
// that triggers the DMA to load the next sample.
MP_STATE_VM(audioout_dac_instance) = gc_alloc(sizeof(struct dac_module), false);
if (MP_STATE_VM(audioout_dac_instance) == NULL) {
mp_raise_msg(&mp_type_MemoryError, "");
}
struct dac_config config_dac;
dac_get_config_defaults(&config_dac);
config_dac.left_adjust = true;
config_dac.reference = DAC_REFERENCE_AVCC;
config_dac.clock_source = GCLK_GENERATOR_0;
enum status_code status = dac_init(MP_STATE_VM(audioout_dac_instance), DAC, &config_dac);
if (status != STATUS_OK) {
common_hal_audioio_audioout_deinit(self);
mp_raise_OSError(MP_EIO);
return;
}
struct dac_chan_config channel_config;
dac_chan_get_config_defaults(&channel_config);
dac_chan_set_config(MP_STATE_VM(audioout_dac_instance), DAC_CHANNEL_0, &channel_config);
dac_chan_enable(MP_STATE_VM(audioout_dac_instance), DAC_CHANNEL_0);
struct dac_events events_dac = { .generate_event_on_buffer_empty = true,
.on_event_start_conversion = true };
dac_enable_events(MP_STATE_VM(audioout_dac_instance), &events_dac);
// Figure out which timer we are using.
Tc *t = NULL;
Tc *tcs[TC_INST_NUM] = TC_INSTS;
for (uint8_t i = TC_INST_NUM; i > 0; i--) {
if (tcs[i - 1]->COUNT16.CTRLA.bit.ENABLE == 0) {
t = tcs[i - 1];
break;
}
}
if (t == NULL) {
common_hal_audioio_audioout_deinit(self);
mp_raise_RuntimeError("All timers in use");
return;
}
MP_STATE_VM(audioout_sample_timer) = gc_alloc(sizeof(struct tc_module), false);
if (MP_STATE_VM(audioout_sample_timer) == NULL) {
common_hal_audioio_audioout_deinit(self);
mp_raise_msg(&mp_type_MemoryError, "");
}
// Don't bother setting the period. We set it before you playback anything.
struct tc_config config_tc;
tc_get_config_defaults(&config_tc);
config_tc.counter_size = TC_COUNTER_SIZE_16BIT;
config_tc.clock_prescaler = TC_CLOCK_PRESCALER_DIV1;
config_tc.wave_generation = TC_WAVE_GENERATION_MATCH_FREQ;
if (tc_init(MP_STATE_VM(audioout_sample_timer), t, &config_tc) != STATUS_OK) {
common_hal_audioio_audioout_deinit(self);
mp_raise_OSError(MP_EIO);
return;
};
struct tc_events events_tc;
events_tc.generate_event_on_overflow = true;
events_tc.on_event_perform_action = false;
events_tc.event_action = TC_EVENT_ACTION_OFF;
tc_enable_events(MP_STATE_VM(audioout_sample_timer), &events_tc);
tc_enable(MP_STATE_VM(audioout_sample_timer));
tc_stop_counter(MP_STATE_VM(audioout_sample_timer));
// Connect the timer overflow event, which happens at the target frequency,
// to the DAC conversion trigger.
MP_STATE_VM(audioout_sample_event) = gc_alloc(sizeof(struct events_resource), false);
if (MP_STATE_VM(audioout_sample_event) == NULL) {
common_hal_audioio_audioout_deinit(self);
mp_raise_msg(&mp_type_MemoryError, "");
}
struct events_config config;
events_get_config_defaults(&config);
uint8_t generator = EVSYS_ID_GEN_TC3_OVF;
if (t == TC4) {
generator = EVSYS_ID_GEN_TC4_OVF;
} else if (t == TC5) {
generator = EVSYS_ID_GEN_TC5_OVF;
#ifdef TC6
} else if (t == TC6) {
generator = EVSYS_ID_GEN_TC6_OVF;
#endif
#ifdef TC7
} else if (t == TC7) {
generator = EVSYS_ID_GEN_TC7_OVF;
#endif
}
config.generator = generator;
config.path = EVENTS_PATH_ASYNCHRONOUS;
if (events_allocate(MP_STATE_VM(audioout_sample_event), &config) != STATUS_OK ||
events_attach_user(MP_STATE_VM(audioout_sample_event), EVSYS_ID_USER_DAC_START) != STATUS_OK) {
common_hal_audioio_audioout_deinit(self);
mp_raise_OSError(MP_EIO);
return;
}
// Connect the DAC to DMA
MP_STATE_VM(audioout_dac_event) = gc_alloc(sizeof(struct events_resource), false);
if (MP_STATE_VM(audioout_dac_event) == NULL) {
common_hal_audioio_audioout_deinit(self);
mp_raise_msg(&mp_type_MemoryError, "");
}
events_get_config_defaults(&config);
config.generator = EVSYS_ID_GEN_DAC_EMPTY;
config.path = EVENTS_PATH_ASYNCHRONOUS;
if (events_allocate(MP_STATE_VM(audioout_dac_event), &config) != STATUS_OK ||
events_attach_user(MP_STATE_VM(audioout_dac_event), EVSYS_ID_USER_DMAC_CH_0) != STATUS_OK) {
common_hal_audioio_audioout_deinit(self);
mp_raise_OSError(MP_EIO);
return;
}
// Leave the DMA setup to the specific constructor.
}
void common_hal_audioio_audioout_construct_from_buffer(audioio_audioout_obj_t* self,
const mcu_pin_obj_t* pin,
uint16_t* buffer,
uint32_t len,
uint8_t bytes_per_sample) {
self->pin = pin;
if (pin != &pin_PA02) {
mp_raise_ValueError("Invalid pin");
}
if (refcount == 0) {
refcount++;
shared_construct(self, pin);
}
self->buffer = (uint8_t*) buffer;
self->second_buffer = NULL;
self->bytes_per_sample = bytes_per_sample;
self->len = len;
self->frequency = 8000;
}
void common_hal_audioio_audioout_construct_from_file(audioio_audioout_obj_t* self,
const mcu_pin_obj_t* pin,
pyb_file_obj_t* file) {
self->pin = pin;
if (pin != &pin_PA02) {
mp_raise_ValueError("Invalid pin");
}
if (refcount == 0) {
refcount++;
shared_construct(self, pin);
}
if (MP_STATE_VM(audiodma_block_counter) == NULL && !allocate_block_counter()) {
mp_raise_RuntimeError("Unable to allocate audio DMA block counter.");
}
// Load the wave
self->file = file;
uint8_t chunk_header[16];
f_rewind(&self->file->fp);
UINT bytes_read;
f_read(&self->file->fp, chunk_header, 16, &bytes_read);
if (bytes_read != 16 ||
memcmp(chunk_header, "RIFF", 4) != 0 ||
memcmp(chunk_header + 8, "WAVEfmt ", 8) != 0) {
mp_raise_ValueError("Invalid wave file");
}
uint32_t format_size;
f_read(&self->file->fp, &format_size, 4, &bytes_read);
if (bytes_read != 4 ||
format_size > sizeof(struct wave_format_chunk)) {
mp_raise_ValueError("Invalid format chunk size");
}
struct wave_format_chunk format;
f_read(&self->file->fp, &format, format_size, &bytes_read);
if (bytes_read != format_size) {
}
if (format.audio_format != 1 ||
format.num_channels > 1 ||
format.bits_per_sample > 16 ||
(format_size == 18 &&
format.extra_params != 0)) {
mp_raise_ValueError("Unsupported format");
}
// Get the frequency
self->frequency = format.sample_rate;
self->len = 512;
self->bytes_per_sample = format.bits_per_sample / 8;
// TODO(tannewt): Skip any extra chunks that occur before the data section.
uint8_t data_tag[4];
f_read(&self->file->fp, &data_tag, 4, &bytes_read);
if (bytes_read != 4 ||
memcmp((uint8_t *) data_tag, "data", 4) != 0) {
mp_raise_ValueError("Data chunk must follow fmt chunk");
}
uint32_t data_length;
f_read(&self->file->fp, &data_length, 4, &bytes_read);
if (bytes_read != 4) {
mp_raise_ValueError("Invalid file");
}
self->file_length = data_length;
self->data_start = self->file->fp.fptr;
// Try to allocate two buffers, one will be loaded from file and the other
// DMAed to DAC.
self->buffer = gc_alloc(self->len, false);
if (self->buffer == NULL) {
common_hal_audioio_audioout_deinit(self);
mp_raise_msg(&mp_type_MemoryError, "");
}
self->second_buffer = gc_alloc(self->len, false);
if (self->second_buffer == NULL) {
common_hal_audioio_audioout_deinit(self);
mp_raise_msg(&mp_type_MemoryError, "");
}
self->second_descriptor = gc_alloc(sizeof(DmacDescriptor), false);
if (self->second_descriptor == NULL) {
common_hal_audioio_audioout_deinit(self);
mp_raise_msg(&mp_type_MemoryError, "");
}
}
bool common_hal_audioio_audioout_deinited(audioio_audioout_obj_t* self) {
return self->pin == mp_const_none;
}
void common_hal_audioio_audioout_deinit(audioio_audioout_obj_t* self) {
if (common_hal_audioio_audioout_deinited(self)) {
return;
}
refcount--;
if (refcount == 0) {
if (MP_STATE_VM(audioout_sample_timer) != NULL) {
tc_reset(MP_STATE_VM(audioout_sample_timer));
gc_free(MP_STATE_VM(audioout_sample_timer));
MP_STATE_VM(audioout_sample_timer) = NULL;
}
if (MP_STATE_VM(audioout_dac_instance) != NULL) {
dac_reset(MP_STATE_VM(audioout_dac_instance));
gc_free(MP_STATE_VM(audioout_dac_instance));
MP_STATE_VM(audioout_dac_instance) = NULL;
}
if (MP_STATE_VM(audioout_sample_event) != NULL) {
events_detach_user(MP_STATE_VM(audioout_sample_event), EVSYS_ID_USER_DAC_START);
events_release(MP_STATE_VM(audioout_sample_event));
gc_free(MP_STATE_VM(audioout_sample_event));
MP_STATE_VM(audioout_sample_event) = NULL;
}
if (MP_STATE_VM(audioout_dac_event) != NULL) {
events_release(MP_STATE_VM(audioout_dac_event));
gc_free(MP_STATE_VM(audioout_dac_event));
MP_STATE_VM(audioout_dac_event) = NULL;
}
reset_pin(self->pin->pin);
}
self->pin = mp_const_none;
}
static void set_timer_frequency(uint32_t frequency) {
uint32_t system_clock = system_cpu_clock_get_hz();
uint32_t new_top;
uint8_t new_divisor;
for (new_divisor = 0; new_divisor < 8; new_divisor++) {
new_top = (system_clock / prescaler[new_divisor] / frequency) - 1;
if (new_top < (1u << 16)) {
break;
}
}
uint8_t old_divisor = MP_STATE_VM(audioout_sample_timer)->hw->COUNT16.CTRLA.bit.PRESCALER;
if (new_divisor != old_divisor) {
tc_disable(MP_STATE_VM(audioout_sample_timer));
MP_STATE_VM(audioout_sample_timer)->hw->COUNT16.CTRLA.bit.PRESCALER = new_divisor;
tc_enable(MP_STATE_VM(audioout_sample_timer));
}
while (tc_is_syncing(MP_STATE_VM(audioout_sample_timer))) {
/* Wait for sync */
}
MP_STATE_VM(audioout_sample_timer)->hw->COUNT16.CC[0].reg = new_top;
while (tc_is_syncing(MP_STATE_VM(audioout_sample_timer))) {
/* Wait for sync */
}
}
void common_hal_audioio_audioout_play(audioio_audioout_obj_t* self, bool loop) {
common_hal_audioio_audioout_get_playing(self);
// Shut down any active playback.
if (active_audioout != NULL) {
tc_stop_counter(MP_STATE_VM(audioout_sample_timer));
dma_abort_job(&audio_dma);
} else {
dac_enable(MP_STATE_VM(audioout_dac_instance));
}
switch_audiodma_trigger(DAC_DMAC_ID_EMPTY);
struct dma_descriptor_config descriptor_config;
dma_descriptor_get_config_defaults(&descriptor_config);
if (self->bytes_per_sample == 2) {
descriptor_config.beat_size = DMA_BEAT_SIZE_HWORD;
} else {
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE;
}
descriptor_config.dst_increment_enable = false;
// Block transfer count is the number of beats per block (aka descriptor).
// In this case there are two bytes per beat so divide the length by two.
descriptor_config.block_transfer_count = self->len / self->bytes_per_sample;
descriptor_config.source_address = ((uint32_t)self->buffer + self->len);
descriptor_config.destination_address = ((uint32_t)&DAC->DATABUF.reg + 1);
descriptor_config.event_output_selection = DMA_EVENT_OUTPUT_BLOCK;
self->loop = loop;
if (self->second_buffer == NULL) {
if (loop) {
descriptor_config.next_descriptor_address = ((uint32_t)audio_dma.descriptor);
} else {
descriptor_config.next_descriptor_address = 0;
}
} else {
descriptor_config.next_descriptor_address = ((uint32_t)self->second_descriptor);
}
dma_descriptor_create(audio_dma.descriptor, &descriptor_config);
if (self->second_buffer != NULL) {
// TODO(tannewt): Correctly set the end of this.
descriptor_config.block_transfer_count = self->len / self->bytes_per_sample;
descriptor_config.source_address = ((uint32_t)self->second_buffer + self->len);
descriptor_config.next_descriptor_address = ((uint32_t)audio_dma.descriptor);
dma_descriptor_create(self->second_descriptor, &descriptor_config);
self->last_loaded_block = 0;
self->bytes_remaining = self->file_length;
f_lseek(&self->file->fp, self->data_start);
// Seek to the start of the PCM.
UINT length_read;
f_read(&self->file->fp, self->buffer, self->len, &length_read);
self->bytes_remaining -= length_read;
if (self->bytes_per_sample == 2) {
// Undo twos complement.
for (uint16_t i = 0; i < length_read / 2; i++) {
self->buffer[2 * i + 1] ^= 0x80;
}
}
f_read(&self->file->fp, self->second_buffer, self->len, &length_read);
self->bytes_remaining -= length_read;
if (self->bytes_per_sample == 2) {
// Undo twos complement.
for (uint16_t i = 0; i < length_read / 2; i++) {
self->second_buffer[2 * i + 1] ^= 0x80;
}
}
}
active_audioout = self;
dma_start_transfer_job(&audio_dma);
if (MP_STATE_VM(audiodma_block_counter) != NULL) {
tc_start_counter(MP_STATE_VM(audiodma_block_counter));
}
set_timer_frequency(self->frequency);
tc_start_counter(MP_STATE_VM(audioout_sample_timer));
}
void common_hal_audioio_audioout_stop(audioio_audioout_obj_t* self) {
if (active_audioout == self) {
if (MP_STATE_VM(audiodma_block_counter) != NULL) {
tc_stop_counter(MP_STATE_VM(audiodma_block_counter));
}
tc_stop_counter(MP_STATE_VM(audioout_sample_timer));
dma_abort_job(&audio_dma);
active_audioout = NULL;
dac_disable(MP_STATE_VM(audioout_dac_instance));
}
}
bool common_hal_audioio_audioout_get_playing(audioio_audioout_obj_t* self) {
if (!dma_is_busy(&audio_dma)) {
if (active_audioout != NULL) {
common_hal_audioio_audioout_stop(active_audioout);
}
active_audioout = NULL;
}
return active_audioout == self;
}
void common_hal_audioio_audioout_set_frequency(audioio_audioout_obj_t* self,
uint32_t frequency) {
if (frequency == 0 || frequency > 350000) {
mp_raise_ValueError("Unsupported playback frequency");
}
self->frequency = frequency;
if (common_hal_audioio_audioout_get_playing(self)) {
set_timer_frequency(frequency);
}
}
uint32_t common_hal_audioio_audioout_get_frequency(audioio_audioout_obj_t* self) {
return self->frequency;
}