234 lines
7.0 KiB
Python
Raw Normal View History

"""NRF24L01 driver for Micro Python
"""
import pyb
# nRF24L01+ registers
CONFIG = const(0x00)
EN_RXADDR = const(0x02)
SETUP_AW = const(0x03)
SETUP_RETR = const(0x04)
RF_CH = const(0x05)
RF_SETUP = const(0x06)
STATUS = const(0x07)
RX_ADDR_P0 = const(0x0a)
TX_ADDR = const(0x10)
RX_PW_P0 = const(0x11)
FIFO_STATUS = const(0x17)
DYNPD = const(0x1c)
# CONFIG register
EN_CRC = const(0x08) # enable CRC
CRCO = const(0x04) # CRC encoding scheme; 0=1 byte, 1=2 bytes
PWR_UP = const(0x02) # 1=power up, 0=power down
PRIM_RX = const(0x01) # RX/TX control; 0=PTX, 1=PRX
# RF_SETUP register
POWER_0 = const(0x00) # -18 dBm
POWER_1 = const(0x02) # -12 dBm
POWER_2 = const(0x04) # -6 dBm
POWER_3 = const(0x06) # 0 dBm
SPEED_1M = const(0x00)
SPEED_2M = const(0x08)
SPEED_250K = const(0x20)
# STATUS register
RX_DR = const(0x40) # RX data ready; write 1 to clear
TX_DS = const(0x20) # TX data sent; write 1 to clear
MAX_RT = const(0x10) # max retransmits reached; write 1 to clear
# FIFO_STATUS register
RX_EMPTY = const(0x01) # 1 if RX FIFO is empty
# constants for instructions
R_RX_PL_WID = const(0x60) # read RX payload width
R_RX_PAYLOAD = const(0x61) # read RX payload
W_TX_PAYLOAD = const(0xa0) # write TX payload
FLUSH_TX = const(0xe1) # flush TX FIFO
FLUSH_RX = const(0xe2) # flush RX FIFO
NOP = const(0xff) # use to read STATUS register
class NRF24L01:
def __init__(self, spi, cs, ce, channel=46, payload_size=16):
assert payload_size <= 32
# init the SPI bus and pins
spi.init(spi.MASTER, baudrate=4000000, polarity=0, phase=1, firstbit=spi.MSB)
cs.init(cs.OUT_PP, cs.PULL_NONE)
ce.init(ce.OUT_PP, ce.PULL_NONE)
# store the pins
self.spi = spi
self.cs = cs
self.ce = ce
# reset everything
self.ce.low()
self.cs.high()
self.payload_size = payload_size
self.pipe0_read_addr = None
pyb.delay(5)
# set address width to 5 bytes and check for device present
self.reg_write(SETUP_AW, 0b11)
if self.reg_read(SETUP_AW) != 0b11:
raise OSError("nRF24L01+ Hardware not responding")
# disable dynamic payloads
self.reg_write(DYNPD, 0)
# auto retransmit delay: 1750us
# auto retransmit count: 8
self.reg_write(SETUP_RETR, (6 << 4) | 8)
# set rf power and speed
self.set_power_speed(POWER_3, SPEED_250K) # Best for point to point links
# init CRC
self.set_crc(2)
# clear status flags
self.reg_write(STATUS, RX_DR | TX_DS | MAX_RT)
# set channel
self.set_channel(channel)
# flush buffers
self.flush_rx()
self.flush_tx()
def reg_read(self, reg):
self.cs.low()
self.spi.send_recv(reg)
buf = self.spi.recv(1)
self.cs.high()
return buf[0]
def reg_write(self, reg, buf):
self.cs.low()
status = self.spi.send_recv(0x20 | reg)[0]
self.spi.send(buf)
self.cs.high()
return status
def flush_rx(self):
self.cs.low()
self.spi.send(FLUSH_RX)
self.cs.high()
def flush_tx(self):
self.cs.low()
self.spi.send(FLUSH_TX)
self.cs.high()
# power is one of POWER_x defines; speed is one of SPEED_x defines
def set_power_speed(self, power, speed):
setup = self.reg_read(RF_SETUP) & 0b11010001
self.reg_write(RF_SETUP, setup | power | speed)
# length in bytes: 0, 1 or 2
def set_crc(self, length):
config = self.reg_read(CONFIG) & ~(CRCO | EN_CRC)
if length == 0:
pass
elif length == 1:
config |= EN_CRC
else:
config |= EN_CRC | CRCO
self.reg_write(CONFIG, config)
def set_channel(self, channel):
self.reg_write(RF_CH, min(channel, 125))
# address should be a bytes object 5 bytes long
def open_tx_pipe(self, address):
assert len(address) == 5
self.reg_write(RX_ADDR_P0, address)
self.reg_write(TX_ADDR, address)
self.reg_write(RX_PW_P0, self.payload_size)
# address should be a bytes object 5 bytes long
# pipe 0 and 1 have 5 byte address
# pipes 2-5 use same 4 most-significant bytes as pipe 1, plus 1 extra byte
def open_rx_pipe(self, pipe_id, address):
assert len(address) == 5
assert 0 <= pipe_id <= 5
if pipe_id == 0:
self.pipe0_read_addr = address
if pipe_id < 2:
self.reg_write(RX_ADDR_P0 + pipe_id, address)
else:
self.reg_write(RX_ADDR_P0 + pipe_id, address[0])
self.reg_write(RX_PW_P0 + pipe_id, self.payload_size)
self.reg_write(EN_RXADDR, self.reg_read(EN_RXADDR) | (1 << pipe_id))
def start_listening(self):
self.reg_write(CONFIG, self.reg_read(CONFIG) | PWR_UP | PRIM_RX)
self.reg_write(STATUS, RX_DR | TX_DS | MAX_RT)
if self.pipe0_read_addr is not None:
self.reg_write(RX_ADDR_P0, self.pipe0_read_addr)
self.flush_rx()
self.flush_tx()
self.ce.high()
pyb.udelay(130)
def stop_listening(self):
self.ce.low()
self.flush_tx()
self.flush_rx()
# returns True if any data available to recv
def any(self):
return not bool(self.reg_read(FIFO_STATUS) & RX_EMPTY)
def recv(self):
# get the data
self.cs.low()
self.spi.send(R_RX_PAYLOAD)
buf = self.spi.recv(self.payload_size)
self.cs.high()
# clear RX ready flag
self.reg_write(STATUS, RX_DR)
return buf
# blocking wait for tx complete
def send(self, buf, timeout=500):
send_nonblock = self.send_start(buf)
start = pyb.millis()
result = None
while result is None and pyb.elapsed_millis(start) < timeout:
result = self.send_done() # 1 == success, 2 == fail
if result == 2:
raise OSError("send failed")
# non-blocking tx
def send_start(self, buf):
# power up
self.reg_write(CONFIG, (self.reg_read(CONFIG) | PWR_UP) & ~PRIM_RX)
pyb.udelay(150)
# send the data
self.cs.low()
self.spi.send(W_TX_PAYLOAD)
self.spi.send(buf)
if len(buf) < self.payload_size:
self.spi.send(b'\x00' * (self.payload_size - len(buf))) # pad out data
self.cs.high()
# enable the chip so it can send the data
self.ce.high()
pyb.udelay(15) # needs to be >10us
self.ce.low()
# returns None if send still in progress, 1 for success, 2 for fail
def send_done(self):
if not (self.reg_read(STATUS) & (TX_DS | MAX_RT)):
return None # tx not finished
# either finished or failed: get and clear status flags, power down
status = self.reg_write(STATUS, RX_DR | TX_DS | MAX_RT)
self.reg_write(CONFIG, self.reg_read(CONFIG) & ~PWR_UP)
return 1 if status & TX_DS else 2