circuitpython/py/objcomplex.c

252 lines
8.9 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include "py/nlr.h"
#include "py/obj.h"
#include "py/parsenum.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#if MICROPY_PY_BUILTINS_COMPLEX
#include <math.h>
#include "py/formatfloat.h"
typedef struct _mp_obj_complex_t {
mp_obj_base_t base;
mp_float_t real;
mp_float_t imag;
} mp_obj_complex_t;
STATIC void complex_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
(void)kind;
mp_obj_complex_t *o = MP_OBJ_TO_PTR(o_in);
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
char buf[16];
const int precision = 7;
#else
char buf[32];
const int precision = 16;
#endif
if (o->real == 0) {
mp_format_float(o->imag, buf, sizeof(buf), 'g', precision, '\0');
mp_printf(print, "%sj", buf);
} else {
mp_format_float(o->real, buf, sizeof(buf), 'g', precision, '\0');
mp_printf(print, "(%s", buf);
if (o->imag >= 0 || isnan(o->imag)) {
mp_print_str(print, "+");
}
mp_format_float(o->imag, buf, sizeof(buf), 'g', precision, '\0');
mp_printf(print, "%sj)", buf);
}
}
STATIC mp_obj_t complex_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
(void)type_in;
mp_arg_check_num(n_args, n_kw, 0, 2, false);
switch (n_args) {
case 0:
return mp_obj_new_complex(0, 0);
case 1:
if (MP_OBJ_IS_STR(args[0])) {
// a string, parse it
mp_uint_t l;
const char *s = mp_obj_str_get_data(args[0], &l);
return mp_parse_num_decimal(s, l, true, true, NULL);
} else if (MP_OBJ_IS_TYPE(args[0], &mp_type_complex)) {
// a complex, just return it
return args[0];
} else {
// something else, try to cast it to a complex
return mp_obj_new_complex(mp_obj_get_float(args[0]), 0);
}
case 2:
default: {
mp_float_t real, imag;
if (MP_OBJ_IS_TYPE(args[0], &mp_type_complex)) {
mp_obj_complex_get(args[0], &real, &imag);
} else {
real = mp_obj_get_float(args[0]);
imag = 0;
}
if (MP_OBJ_IS_TYPE(args[1], &mp_type_complex)) {
mp_float_t real2, imag2;
mp_obj_complex_get(args[1], &real2, &imag2);
real -= imag2;
imag += real2;
} else {
imag += mp_obj_get_float(args[1]);
}
return mp_obj_new_complex(real, imag);
}
}
}
STATIC mp_obj_t complex_unary_op(mp_uint_t op, mp_obj_t o_in) {
mp_obj_complex_t *o = MP_OBJ_TO_PTR(o_in);
switch (op) {
case MP_UNARY_OP_BOOL: return mp_obj_new_bool(o->real != 0 || o->imag != 0);
case MP_UNARY_OP_POSITIVE: return o_in;
case MP_UNARY_OP_NEGATIVE: return mp_obj_new_complex(-o->real, -o->imag);
default: return MP_OBJ_NULL; // op not supported
}
}
STATIC mp_obj_t complex_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
mp_obj_complex_t *lhs = MP_OBJ_TO_PTR(lhs_in);
return mp_obj_complex_binary_op(op, lhs->real, lhs->imag, rhs_in);
}
STATIC void complex_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
if (dest[0] != MP_OBJ_NULL) {
// not load attribute
return;
}
mp_obj_complex_t *self = MP_OBJ_TO_PTR(self_in);
if (attr == MP_QSTR_real) {
dest[0] = mp_obj_new_float(self->real);
} else if (attr == MP_QSTR_imag) {
dest[0] = mp_obj_new_float(self->imag);
}
}
const mp_obj_type_t mp_type_complex = {
{ &mp_type_type },
.name = MP_QSTR_complex,
.print = complex_print,
.make_new = complex_make_new,
.unary_op = complex_unary_op,
.binary_op = complex_binary_op,
.attr = complex_attr,
};
mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag) {
mp_obj_complex_t *o = m_new_obj(mp_obj_complex_t);
o->base.type = &mp_type_complex;
o->real = real;
o->imag = imag;
return MP_OBJ_FROM_PTR(o);
}
void mp_obj_complex_get(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_complex));
mp_obj_complex_t *self = MP_OBJ_TO_PTR(self_in);
*real = self->real;
*imag = self->imag;
}
mp_obj_t mp_obj_complex_binary_op(mp_uint_t op, mp_float_t lhs_real, mp_float_t lhs_imag, mp_obj_t rhs_in) {
mp_float_t rhs_real, rhs_imag;
mp_obj_get_complex(rhs_in, &rhs_real, &rhs_imag); // can be any type, this function will convert to float (if possible)
switch (op) {
case MP_BINARY_OP_ADD:
case MP_BINARY_OP_INPLACE_ADD:
lhs_real += rhs_real;
lhs_imag += rhs_imag;
break;
case MP_BINARY_OP_SUBTRACT:
case MP_BINARY_OP_INPLACE_SUBTRACT:
lhs_real -= rhs_real;
lhs_imag -= rhs_imag;
break;
case MP_BINARY_OP_MULTIPLY:
2014-04-09 20:21:00 +01:00
case MP_BINARY_OP_INPLACE_MULTIPLY: {
mp_float_t real;
multiply:
real = lhs_real * rhs_real - lhs_imag * rhs_imag;
lhs_imag = lhs_real * rhs_imag + lhs_imag * rhs_real;
lhs_real = real;
break;
}
case MP_BINARY_OP_FLOOR_DIVIDE:
2014-04-09 20:21:00 +01:00
case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "can't do truncated division of a complex number"));
case MP_BINARY_OP_TRUE_DIVIDE:
2014-04-09 20:21:00 +01:00
case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
if (rhs_imag == 0) {
if (rhs_real == 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ZeroDivisionError, "complex division by zero"));
}
lhs_real /= rhs_real;
lhs_imag /= rhs_real;
} else if (rhs_real == 0) {
mp_float_t real = lhs_imag / rhs_imag;
lhs_imag = -lhs_real / rhs_imag;
lhs_real = real;
} else {
mp_float_t rhs_len_sq = rhs_real*rhs_real + rhs_imag*rhs_imag;
rhs_real /= rhs_len_sq;
rhs_imag /= -rhs_len_sq;
goto multiply;
}
break;
case MP_BINARY_OP_POWER:
case MP_BINARY_OP_INPLACE_POWER: {
// z1**z2 = exp(z2*ln(z1))
// = exp(z2*(ln(|z1|)+i*arg(z1)))
// = exp( (x2*ln1 - y2*arg1) + i*(y2*ln1 + x2*arg1) )
// = exp(x3 + i*y3)
// = exp(x3)*(cos(y3) + i*sin(y3))
mp_float_t abs1 = MICROPY_FLOAT_C_FUN(sqrt)(lhs_real*lhs_real + lhs_imag*lhs_imag);
if (abs1 == 0) {
if (rhs_imag == 0) {
lhs_real = 1;
rhs_real = 0;
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ZeroDivisionError, "0.0 to a complex power"));
}
} else {
mp_float_t ln1 = MICROPY_FLOAT_C_FUN(log)(abs1);
mp_float_t arg1 = MICROPY_FLOAT_C_FUN(atan2)(lhs_imag, lhs_real);
mp_float_t x3 = rhs_real * ln1 - rhs_imag * arg1;
mp_float_t y3 = rhs_imag * ln1 + rhs_real * arg1;
mp_float_t exp_x3 = MICROPY_FLOAT_C_FUN(exp)(x3);
lhs_real = exp_x3 * MICROPY_FLOAT_C_FUN(cos)(y3);
lhs_imag = exp_x3 * MICROPY_FLOAT_C_FUN(sin)(y3);
}
break;
}
case MP_BINARY_OP_EQUAL: return mp_obj_new_bool(lhs_real == rhs_real && lhs_imag == rhs_imag);
2014-04-09 20:21:00 +01:00
default:
return MP_OBJ_NULL; // op not supported
}
return mp_obj_new_complex(lhs_real, lhs_imag);
}
#endif