circuitpython/stmhal/dma.c

252 lines
10 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include STM32_HAL_H
#include "dma.h"
#include "py/obj.h"
#include "irq.h"
#define NSTREAMS_PER_CONTROLLER_LOG2 (3)
#define NSTREAMS_PER_CONTROLLER (1 << NSTREAMS_PER_CONTROLLER_LOG2)
#define NCONTROLLERS (2)
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
static const uint8_t dma_irqn[NSTREAM] = {
DMA1_Stream0_IRQn,
DMA1_Stream1_IRQn,
DMA1_Stream2_IRQn,
DMA1_Stream3_IRQn,
DMA1_Stream4_IRQn,
DMA1_Stream5_IRQn,
DMA1_Stream6_IRQn,
DMA1_Stream7_IRQn,
DMA2_Stream0_IRQn,
DMA2_Stream1_IRQn,
DMA2_Stream2_IRQn,
DMA2_Stream3_IRQn,
DMA2_Stream4_IRQn,
DMA2_Stream5_IRQn,
DMA2_Stream6_IRQn,
DMA2_Stream7_IRQn,
};
// Default parameters to dma_init() shared by spi and i2c; Channel and Direction
// vary depending on the peripheral instance so they get passed separately
const DMA_InitTypeDef dma_init_struct_spi_i2c = {
.Channel = 0,
.Direction = 0,
.PeriphInc = DMA_PINC_DISABLE,
.MemInc = DMA_MINC_ENABLE,
.PeriphDataAlignment = DMA_PDATAALIGN_BYTE,
.MemDataAlignment = DMA_MDATAALIGN_BYTE,
.Mode = DMA_NORMAL,
.Priority = DMA_PRIORITY_LOW,
.FIFOMode = DMA_FIFOMODE_DISABLE,
.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL,
.MemBurst = DMA_MBURST_INC4,
.PeriphBurst = DMA_PBURST_INC4
};
static DMA_HandleTypeDef *dma_handle[NSTREAM] = {NULL};
static uint8_t dma_last_channel[NSTREAM];
static volatile uint32_t dma_enable_mask = 0;
volatile dma_idle_count_t dma_idle;
#define DMA1_ENABLE_MASK 0x00ff // Bits in dma_enable_mask corresponfing to DMA1
#define DMA2_ENABLE_MASK 0xff00 // Bits in dma_enable_mask corresponding to DMA2
#define DMA_INVALID_CHANNEL 0xff // Value stored in dma_last_channel which means invalid
#define DMA_CHANNEL_AS_UINT8(dma_channel) (((dma_channel) & DMA_SxCR_CHSEL) >> 24)
void DMA1_Stream0_IRQHandler(void) { if (dma_handle[0] != NULL) { HAL_DMA_IRQHandler(dma_handle[0]); } }
void DMA1_Stream1_IRQHandler(void) { if (dma_handle[1] != NULL) { HAL_DMA_IRQHandler(dma_handle[1]); } }
void DMA1_Stream2_IRQHandler(void) { if (dma_handle[2] != NULL) { HAL_DMA_IRQHandler(dma_handle[2]); } }
void DMA1_Stream3_IRQHandler(void) { if (dma_handle[3] != NULL) { HAL_DMA_IRQHandler(dma_handle[3]); } }
void DMA1_Stream4_IRQHandler(void) { if (dma_handle[4] != NULL) { HAL_DMA_IRQHandler(dma_handle[4]); } }
void DMA1_Stream5_IRQHandler(void) { if (dma_handle[5] != NULL) { HAL_DMA_IRQHandler(dma_handle[5]); } }
void DMA1_Stream6_IRQHandler(void) { if (dma_handle[6] != NULL) { HAL_DMA_IRQHandler(dma_handle[6]); } }
void DMA1_Stream7_IRQHandler(void) { if (dma_handle[7] != NULL) { HAL_DMA_IRQHandler(dma_handle[7]); } }
void DMA2_Stream0_IRQHandler(void) { if (dma_handle[8] != NULL) { HAL_DMA_IRQHandler(dma_handle[8]); } }
void DMA2_Stream1_IRQHandler(void) { if (dma_handle[9] != NULL) { HAL_DMA_IRQHandler(dma_handle[9]); } }
void DMA2_Stream2_IRQHandler(void) { if (dma_handle[10] != NULL) { HAL_DMA_IRQHandler(dma_handle[10]); } }
void DMA2_Stream3_IRQHandler(void) { if (dma_handle[11] != NULL) { HAL_DMA_IRQHandler(dma_handle[11]); } }
void DMA2_Stream4_IRQHandler(void) { if (dma_handle[12] != NULL) { HAL_DMA_IRQHandler(dma_handle[12]); } }
void DMA2_Stream5_IRQHandler(void) { if (dma_handle[13] != NULL) { HAL_DMA_IRQHandler(dma_handle[13]); } }
void DMA2_Stream6_IRQHandler(void) { if (dma_handle[14] != NULL) { HAL_DMA_IRQHandler(dma_handle[14]); } }
void DMA2_Stream7_IRQHandler(void) { if (dma_handle[15] != NULL) { HAL_DMA_IRQHandler(dma_handle[15]); } }
#define DMA1_IS_CLK_ENABLED() ((RCC->AHB1ENR & RCC_AHB1ENR_DMA1EN) != 0)
#define DMA2_IS_CLK_ENABLED() ((RCC->AHB1ENR & RCC_AHB1ENR_DMA2EN) != 0)
static int get_dma_id(DMA_Stream_TypeDef *dma_stream) {
int dma_id;
if (dma_stream < DMA2_Stream0) {
dma_id = dma_stream - DMA1_Stream0;
} else {
dma_id = NSTREAMS_PER_CONTROLLER + (dma_stream - DMA2_Stream0);
}
return dma_id;
}
// Resets the idle counter for the DMA controller associated with dma_id.
static void dma_tickle(int dma_id) {
dma_idle.counter[(dma_id >> NSTREAMS_PER_CONTROLLER_LOG2) & 1] = 1;
}
static void dma_enable_clock(int dma_id) {
// We don't want dma_tick_handler() to turn off the clock right after we
// enable it, so we need to mark the channel in use in an atomic fashion.
mp_uint_t irq_state = MICROPY_BEGIN_ATOMIC_SECTION();
uint32_t old_enable_mask = dma_enable_mask;
dma_enable_mask |= (1 << dma_id);
MICROPY_END_ATOMIC_SECTION(irq_state);
if (dma_id <= 7) {
if (((old_enable_mask & DMA1_ENABLE_MASK) == 0) && !DMA1_IS_CLK_ENABLED()) {
__DMA1_CLK_ENABLE();
// We just turned on the clock. This means that anything stored
// in dma_last_channel (for DMA1) needs to be invalidated.
for (int channel = 0; channel < NSTREAMS_PER_CONTROLLER; channel++) {
dma_last_channel[channel] = DMA_INVALID_CHANNEL;
}
}
} else {
if (((old_enable_mask & DMA2_ENABLE_MASK) == 0) && !DMA2_IS_CLK_ENABLED()) {
__DMA2_CLK_ENABLE();
// We just turned on the clock. This means that anything stored
// in dma_last_channel (for DMA1) needs to be invalidated.
for (int channel = NSTREAMS_PER_CONTROLLER; channel < NSTREAM; channel++) {
dma_last_channel[channel] = DMA_INVALID_CHANNEL;
}
}
}
}
static void dma_disable_clock(int dma_id) {
// We just mark the clock as disabled here, but we don't actually disable it.
// We wait for the timer to expire first, which means that back-to-back
// transfers don't have to initialize as much.
dma_tickle(dma_id);
dma_enable_mask &= ~(1 << dma_id);
}
void dma_init(DMA_HandleTypeDef *dma, DMA_Stream_TypeDef *dma_stream, const DMA_InitTypeDef *dma_init, uint32_t dma_channel, uint32_t direction, void *data) {
int dma_id = get_dma_id(dma_stream);
//printf("dma_init(%p, %p(%d), 0x%x, 0x%x, %p)\n", dma, dma_stream, dma_id, (uint)dma_channel, (uint)direction, data);
// Some drivers allocate the DMA_HandleTypeDef from the stack
// (i.e. dac, i2c, spi) and for those cases we need to clear the
// structure so we don't get random values from the stack)
memset(dma, 0, sizeof(*dma));
// set global pointer for IRQ handler
dma_handle[dma_id] = dma;
// initialise parameters
dma->Instance = dma_stream;
dma->Init = *dma_init;
dma->Init.Direction = direction;
dma->Init.Channel = dma_channel;
// half of __HAL_LINKDMA(data, xxx, *dma)
// caller must implement other half by doing: data->xxx = dma
dma->Parent = data;
dma_enable_clock(dma_id);
// if this stream was previously configured for this channel then we
// can skip most of the initialisation
uint8_t channel_uint8 = DMA_CHANNEL_AS_UINT8(dma_channel);
if (dma_last_channel[dma_id] == channel_uint8) {
goto same_channel;
}
dma_last_channel[dma_id] = channel_uint8;
// reset and configure DMA peripheral
if (HAL_DMA_GetState(dma) != HAL_DMA_STATE_RESET) {
HAL_DMA_DeInit(dma);
}
HAL_DMA_Init(dma);
HAL_NVIC_SetPriority(dma_irqn[dma_id], IRQ_PRI_DMA, IRQ_SUBPRI_DMA);
same_channel:
HAL_NVIC_EnableIRQ(dma_irqn[dma_id]);
}
void dma_deinit(DMA_HandleTypeDef *dma) {
int dma_id = get_dma_id(dma->Instance);
HAL_NVIC_DisableIRQ(dma_irqn[dma_id]);
dma_handle[dma_id] = NULL;
dma_disable_clock(dma_id);
}
void dma_invalidate_channel(DMA_Stream_TypeDef *dma_stream, uint32_t dma_channel) {
int dma_id = get_dma_id(dma_stream);
if (dma_last_channel[dma_id] == DMA_CHANNEL_AS_UINT8(dma_channel)) {
dma_last_channel[dma_id] = DMA_INVALID_CHANNEL;
}
}
// Called from the SysTick handler
// We use LSB of tick to select which controller to process
void dma_idle_handler(int tick) {
static const uint32_t controller_mask[] = {
DMA1_ENABLE_MASK, DMA2_ENABLE_MASK
};
{
int controller = tick & 1;
if (dma_idle.counter[controller] == 0) {
return;
}
if (++dma_idle.counter[controller] > DMA_IDLE_TICK_MAX) {
if ((dma_enable_mask & controller_mask[controller]) == 0) {
// Nothing is active and we've reached our idle timeout,
// Now we'll really disable the clock.
dma_idle.counter[controller] = 0;
if (controller == 0) {
__DMA1_CLK_DISABLE();
} else {
__DMA2_CLK_DISABLE();
}
} else {
// Something is still active, but the counter never got
// reset, so we'll reset the counter here.
dma_idle.counter[controller] = 1;
}
}
}
}