stmhal: Turn off DMA clocks when idle for 100 msec
Turning on each DMA block increases the current consumption by about 8 mA. This code adds an idle timer for each DMA block and turns off the clocks when no streams are in use for 128 msec. Having a small timeout allows for improved performance when back-to-back transfers are being performed. The 128 msec is basically a guess.
This commit is contained in:
parent
9f5486c7e2
commit
b677f03407
132
stmhal/dma.c
132
stmhal/dma.c
@ -33,7 +33,9 @@
|
||||
#include "py/obj.h"
|
||||
#include "irq.h"
|
||||
|
||||
#define NSTREAM (16)
|
||||
#define NSTREAMS_PER_CONTROLLER (8)
|
||||
#define NCONTROLLERS (2)
|
||||
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
|
||||
|
||||
static const uint8_t dma_irqn[NSTREAM] = {
|
||||
DMA1_Stream0_IRQn,
|
||||
@ -72,7 +74,16 @@ const DMA_InitTypeDef dma_init_struct_spi_i2c = {
|
||||
};
|
||||
|
||||
static DMA_HandleTypeDef *dma_handle[NSTREAM] = {NULL};
|
||||
static uint32_t dma_last_channel[NSTREAM];
|
||||
static uint8_t dma_last_channel[NSTREAM];
|
||||
static volatile uint32_t dma_enable_mask = 0;
|
||||
|
||||
volatile dma_idle_count_t dma_idle;
|
||||
|
||||
#define DMA1_ENABLE_MASK 0x00ff // Bits in dma_enable_mask corresponfing to DMA1
|
||||
#define DMA2_ENABLE_MASK 0xff00 // Bits in dma_enable_mask corresponding to DMA2
|
||||
#define DMA_INVALID_CHANNEL 0xff // Value stored in dma_last_channel which means invalid
|
||||
|
||||
#define DMA_CHANNEL_AS_UINT8(dma_channel) (((dma_channel) & DMA_SxCR_CHSEL) >> 24)
|
||||
|
||||
void DMA1_Stream0_IRQHandler(void) { if (dma_handle[0] != NULL) { HAL_DMA_IRQHandler(dma_handle[0]); } }
|
||||
void DMA1_Stream1_IRQHandler(void) { if (dma_handle[1] != NULL) { HAL_DMA_IRQHandler(dma_handle[1]); } }
|
||||
@ -91,19 +102,76 @@ void DMA2_Stream5_IRQHandler(void) { if (dma_handle[13] != NULL) { HAL_DMA_IRQHa
|
||||
void DMA2_Stream6_IRQHandler(void) { if (dma_handle[14] != NULL) { HAL_DMA_IRQHandler(dma_handle[14]); } }
|
||||
void DMA2_Stream7_IRQHandler(void) { if (dma_handle[15] != NULL) { HAL_DMA_IRQHandler(dma_handle[15]); } }
|
||||
|
||||
#define DMA1_IS_CLK_ENABLED() ((RCC->AHB1ENR & RCC_AHB1ENR_DMA1EN) != 0)
|
||||
#define DMA2_IS_CLK_ENABLED() ((RCC->AHB1ENR & RCC_AHB1ENR_DMA2EN) != 0)
|
||||
|
||||
static int get_dma_id(DMA_Stream_TypeDef *dma_stream) {
|
||||
if ((uint32_t)dma_stream < DMA2_BASE) {
|
||||
return ((uint32_t)dma_stream - DMA1_Stream0_BASE) / 0x18;
|
||||
int dma_id;
|
||||
if (dma_stream < DMA2_Stream0) {
|
||||
dma_id = dma_stream - DMA1_Stream0;
|
||||
} else {
|
||||
return (NSTREAM / 2) + ((uint32_t)dma_stream - DMA2_Stream0_BASE) / 0x18;
|
||||
dma_id = NSTREAMS_PER_CONTROLLER + (dma_stream - DMA2_Stream0);
|
||||
}
|
||||
return dma_id;
|
||||
}
|
||||
|
||||
// Resets the idle counter for the DMA controller associated with dma_id.
|
||||
static void dma_tickle(int dma_id) {
|
||||
if (dma_id < NSTREAMS_PER_CONTROLLER) {
|
||||
dma_idle.counter[0] = 1;
|
||||
} else {
|
||||
dma_idle.counter[1] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
static void dma_enable_clock(int dma_id) {
|
||||
// We don't want dma_tick_handler() to turn off the clock right after we
|
||||
// enable it, so we need to mark the channel in use in an atomic fashion.
|
||||
mp_uint_t irq_state = MICROPY_BEGIN_ATOMIC_SECTION();
|
||||
uint32_t old_enable_mask = dma_enable_mask;
|
||||
dma_enable_mask |= (1 << dma_id);
|
||||
MICROPY_END_ATOMIC_SECTION(irq_state);
|
||||
|
||||
if (dma_id <= 7) {
|
||||
if (((old_enable_mask & DMA1_ENABLE_MASK) == 0) && !DMA1_IS_CLK_ENABLED()) {
|
||||
__DMA1_CLK_ENABLE();
|
||||
|
||||
// We just turned on the clock. This means that anything stored
|
||||
// in dma_last_channel (for DMA1) needs to be invalidated.
|
||||
|
||||
for (int channel = 0; channel < NSTREAMS_PER_CONTROLLER; channel++) {
|
||||
dma_last_channel[channel] = DMA_INVALID_CHANNEL;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (((old_enable_mask & DMA2_ENABLE_MASK) == 0) && !DMA2_IS_CLK_ENABLED()) {
|
||||
__DMA2_CLK_ENABLE();
|
||||
|
||||
// We just turned on the clock. This means that anything stored
|
||||
// in dma_last_channel (for DMA1) needs to be invalidated.
|
||||
|
||||
for (int channel = NSTREAMS_PER_CONTROLLER; channel < NSTREAM; channel++) {
|
||||
dma_last_channel[channel] = DMA_INVALID_CHANNEL;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void dma_disable_clock(int dma_id) {
|
||||
// We just mark the clock as disabled here, but we don't actually disable it.
|
||||
// We wait for the timer to expire first, which means that back-to-back
|
||||
// transfers don't have to initialize as much.
|
||||
dma_tickle(dma_id);
|
||||
dma_enable_mask &= ~(1 << dma_id);
|
||||
}
|
||||
|
||||
void dma_init(DMA_HandleTypeDef *dma, DMA_Stream_TypeDef *dma_stream, const DMA_InitTypeDef *dma_init, uint32_t dma_channel, uint32_t direction, void *data) {
|
||||
int dma_id = get_dma_id(dma_stream);
|
||||
//printf("dma_init(%p, %p(%d), 0x%x, 0x%x, %p)\n", dma, dma_stream, dma_id, (uint)dma_channel, (uint)direction, data);
|
||||
|
||||
// TODO possibly don't need to clear the entire structure
|
||||
// Some drivers allocate the DMA_HandleTypeDef from the stack
|
||||
// (i.e. dac, i2c, spi) and for those cases we need to clear the
|
||||
// structure so we don't get random values from the stack)
|
||||
memset(dma, 0, sizeof(*dma));
|
||||
|
||||
// set global pointer for IRQ handler
|
||||
@ -119,22 +187,20 @@ void dma_init(DMA_HandleTypeDef *dma, DMA_Stream_TypeDef *dma_stream, const DMA_
|
||||
// caller must implement other half by doing: data->xxx = dma
|
||||
dma->Parent = data;
|
||||
|
||||
dma_enable_clock(dma_id);
|
||||
|
||||
// if this stream was previously configured for this channel then we
|
||||
// can skip most of the initialisation
|
||||
if (dma_last_channel[dma_id] == dma_channel) {
|
||||
uint8_t channel_uint8 = DMA_CHANNEL_AS_UINT8(dma_channel);
|
||||
if (dma_last_channel[dma_id] == channel_uint8) {
|
||||
goto same_channel;
|
||||
}
|
||||
dma_last_channel[dma_id] = dma_channel;
|
||||
|
||||
// enable clock for needed DMA peripheral
|
||||
if (dma_id <= 7) {
|
||||
__DMA1_CLK_ENABLE();
|
||||
} else {
|
||||
__DMA2_CLK_ENABLE();
|
||||
}
|
||||
dma_last_channel[dma_id] = channel_uint8;
|
||||
|
||||
// reset and configure DMA peripheral
|
||||
HAL_DMA_DeInit(dma);
|
||||
if (HAL_DMA_GetState(dma) != HAL_DMA_STATE_RESET) {
|
||||
HAL_DMA_DeInit(dma);
|
||||
}
|
||||
HAL_DMA_Init(dma);
|
||||
HAL_NVIC_SetPriority(dma_irqn[dma_id], IRQ_PRI_DMA, IRQ_SUBPRI_DMA);
|
||||
|
||||
@ -146,11 +212,41 @@ void dma_deinit(DMA_HandleTypeDef *dma) {
|
||||
int dma_id = get_dma_id(dma->Instance);
|
||||
HAL_NVIC_DisableIRQ(dma_irqn[dma_id]);
|
||||
dma_handle[dma_id] = NULL;
|
||||
|
||||
dma_disable_clock(dma_id);
|
||||
}
|
||||
|
||||
void dma_invalidate_channel(DMA_Stream_TypeDef *dma_stream, uint32_t dma_channel) {
|
||||
int dma_id = get_dma_id(dma_stream);
|
||||
if (dma_last_channel[dma_id] == dma_channel) {
|
||||
dma_last_channel[dma_id] = 0xffffffff;
|
||||
if (dma_last_channel[dma_id] == DMA_CHANNEL_AS_UINT8(dma_channel)) {
|
||||
dma_last_channel[dma_id] = DMA_INVALID_CHANNEL;
|
||||
}
|
||||
}
|
||||
|
||||
// Called from the SysTick handler (once per millisecond)
|
||||
void dma_idle_handler() {
|
||||
static const uint32_t controller_mask[] = {
|
||||
DMA1_ENABLE_MASK, DMA2_ENABLE_MASK
|
||||
};
|
||||
for (int controller = 0; controller < NCONTROLLERS; controller++) {
|
||||
if (dma_idle.counter[controller] == 0) {
|
||||
continue;
|
||||
}
|
||||
if (++dma_idle.counter[controller] > DMA_IDLE_TICK_MAX) {
|
||||
if ((dma_enable_mask & controller_mask[controller]) == 0) {
|
||||
// Nothing is active and we've reached our idle timeout,
|
||||
// Now we'll really disable the clock.
|
||||
dma_idle.counter[controller] = 0;
|
||||
if (controller == 0) {
|
||||
__DMA1_CLK_DISABLE();
|
||||
} else {
|
||||
__DMA2_CLK_DISABLE();
|
||||
}
|
||||
} else {
|
||||
// Something is still active, but the counter never got
|
||||
// reset, so we'll reset the counter here.
|
||||
dma_idle.counter[controller] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
20
stmhal/dma.h
20
stmhal/dma.h
@ -24,8 +24,28 @@
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
|
||||
//TODO: Put stream/channel defs for i2c/spi/can, etc here
|
||||
#define DMA_STREAM_SDIO_RX DMA2_Stream3
|
||||
#define DMA_CHANNEL_SDIO_RX DMA_CHANNEL_4
|
||||
|
||||
#define DMA_STREAM_SDIO_TX DMA2_Stream6
|
||||
#define DMA_CHANNEL_SDIO_TX DMA_CHANNEL_4
|
||||
|
||||
typedef union {
|
||||
uint16_t enabled; // Used to test if both counters are == 0
|
||||
uint8_t counter[2];
|
||||
} dma_idle_count_t;
|
||||
extern volatile dma_idle_count_t dma_idle;
|
||||
#define DMA_IDLE_ENABLED() (dma_idle.enabled != 0)
|
||||
|
||||
#define DMA_SYSTICK_MASK 0x0F
|
||||
#define DMA_MSECS_PER_SYSTICK (DMA_SYSTICK_MASK + 1)
|
||||
#define DMA_IDLE_TICK_MAX (8) // 128 msec
|
||||
#define DMA_IDLE_TICK(tick) (((tick) & DMA_SYSTICK_MASK) == 0)
|
||||
|
||||
extern const DMA_InitTypeDef dma_init_struct_spi_i2c;
|
||||
|
||||
void dma_init(DMA_HandleTypeDef *dma, DMA_Stream_TypeDef *dma_stream, const DMA_InitTypeDef *dma_init, uint32_t dma_channel, uint32_t direction, void *data);
|
||||
void dma_deinit(DMA_HandleTypeDef *dma);
|
||||
void dma_invalidate_channel(DMA_Stream_TypeDef *dma_stream, uint32_t dma_channel);
|
||||
void dma_idle_handler();
|
||||
|
@ -77,6 +77,7 @@
|
||||
#include "uart.h"
|
||||
#include "storage.h"
|
||||
#include "can.h"
|
||||
#include "dma.h"
|
||||
|
||||
extern void __fatal_error(const char*);
|
||||
extern PCD_HandleTypeDef pcd_handle;
|
||||
@ -267,6 +268,10 @@ void SysTick_Handler(void) {
|
||||
// the COUNTFLAG bit, which makes the logic in sys_tick_get_microseconds
|
||||
// work properly.
|
||||
SysTick->CTRL;
|
||||
|
||||
if (DMA_IDLE_ENABLED() && DMA_IDLE_TICK(uwTick)) {
|
||||
dma_idle_handler();
|
||||
}
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
|
Loading…
x
Reference in New Issue
Block a user