circuitpython/ports/atmel-samd/common-hal/microcontroller/Processor.c

357 lines
16 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Dan Halbert for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* Includes code from ASF sample code adc_temp.h and adc_temp.c,
* and so includes this license:
*
* Copyright (C) 2015 Atmel Corporation. All rights reserved.
*
* License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <math.h>
#include "py/mphal.h"
#include "common-hal/microcontroller/Processor.h"
#include "shared-bindings/microcontroller/ResetReason.h"
#include "samd/adc.h"
#include "peripheral_clk_config.h"
#define ADC_TEMP_SAMPLE_LENGTH 4
#define INT1V_VALUE_FLOAT 1.0
#define INT1V_DIVIDER_1000 1000.0
#define ADC_12BIT_FULL_SCALE_VALUE_FLOAT 4095.0
2019-10-12 15:42:15 -04:00
// channel argument (ignored in calls below)
#define IGNORED_CHANNEL 0
// Decimal to fraction conversion. (adapted from ASF sample).
STATIC float convert_dec_to_frac(uint8_t val) {
float float_val = (float)val;
if (val < 10) {
return (float_val/10.0);
} else if (val < 100) {
return (float_val/100.0);
} else {
return (float_val/1000.0);
}
}
// Extract the production calibration data information from NVM (adapted from ASF sample),
// then calculate the temperature
#ifdef SAMD21
STATIC float calculate_temperature(uint16_t raw_value) {
volatile uint32_t val1; /* Temperature Log Row Content first 32 bits */
volatile uint32_t val2; /* Temperature Log Row Content another 32 bits */
uint8_t room_temp_val_int; /* Integer part of room temperature in °C */
uint8_t room_temp_val_dec; /* Decimal part of room temperature in °C */
uint8_t hot_temp_val_int; /* Integer part of hot temperature in °C */
uint8_t hot_temp_val_dec; /* Decimal part of hot temperature in °C */
int8_t room_int1v_val; /* internal 1V reference drift at room temperature */
int8_t hot_int1v_val; /* internal 1V reference drift at hot temperature*/
float tempR; // Production Room temperature
float tempH; // Production Hot temperature
float INT1VR; // Room temp 2's complement of the internal 1V reference value
float INT1VH; // Hot temp 2's complement of the internal 1V reference value
uint16_t ADCR; // Production Room temperature ADC value
uint16_t ADCH; // Production Hot temperature ADC value
float VADCR; // Room temperature ADC voltage
float VADCH; // Hot temperature ADC voltage
uint32_t *temp_log_row_ptr = (uint32_t *)NVMCTRL_TEMP_LOG;
val1 = *temp_log_row_ptr;
temp_log_row_ptr++;
val2 = *temp_log_row_ptr;
room_temp_val_int = (uint8_t)((val1 & FUSES_ROOM_TEMP_VAL_INT_Msk) >> FUSES_ROOM_TEMP_VAL_INT_Pos);
room_temp_val_dec = (uint8_t)((val1 & FUSES_ROOM_TEMP_VAL_DEC_Msk) >> FUSES_ROOM_TEMP_VAL_DEC_Pos);
hot_temp_val_int = (uint8_t)((val1 & FUSES_HOT_TEMP_VAL_INT_Msk) >> FUSES_HOT_TEMP_VAL_INT_Pos);
hot_temp_val_dec = (uint8_t)((val1 & FUSES_HOT_TEMP_VAL_DEC_Msk) >> FUSES_HOT_TEMP_VAL_DEC_Pos);
room_int1v_val = (int8_t)((val1 & FUSES_ROOM_INT1V_VAL_Msk) >> FUSES_ROOM_INT1V_VAL_Pos);
hot_int1v_val = (int8_t)((val2 & FUSES_HOT_INT1V_VAL_Msk) >> FUSES_HOT_INT1V_VAL_Pos);
ADCR = (uint16_t)((val2 & FUSES_ROOM_ADC_VAL_Msk) >> FUSES_ROOM_ADC_VAL_Pos);
ADCH = (uint16_t)((val2 & FUSES_HOT_ADC_VAL_Msk) >> FUSES_HOT_ADC_VAL_Pos);
tempR = room_temp_val_int + convert_dec_to_frac(room_temp_val_dec);
tempH = hot_temp_val_int + convert_dec_to_frac(hot_temp_val_dec);
INT1VR = 1 - ((float)room_int1v_val/INT1V_DIVIDER_1000);
INT1VH = 1 - ((float)hot_int1v_val/INT1V_DIVIDER_1000);
VADCR = ((float)ADCR * INT1VR)/ADC_12BIT_FULL_SCALE_VALUE_FLOAT;
VADCH = ((float)ADCH * INT1VH)/ADC_12BIT_FULL_SCALE_VALUE_FLOAT;
float VADC; /* Voltage calculation using ADC result for Coarse Temp calculation */
float VADCM; /* Voltage calculation using ADC result for Fine Temp calculation. */
float INT1VM; /* Voltage calculation for reality INT1V value during the ADC conversion */
VADC = ((float)raw_value * INT1V_VALUE_FLOAT)/ADC_12BIT_FULL_SCALE_VALUE_FLOAT;
// Hopefully compiler will remove common subepxressions here.
// calculate fine temperature using Equation1 and Equation
// 1b as mentioned in data sheet section "Temperature Sensor Characteristics"
// of Electrical Characteristics. (adapted from ASF sample code).
// Coarse Temp Calculation by assume INT1V=1V for this ADC conversion
float coarse_temp = tempR + (((tempH - tempR)/(VADCH - VADCR)) * (VADC - VADCR));
// Calculation to find the real INT1V value during the ADC conversion
INT1VM = INT1VR + (((INT1VH - INT1VR) * (coarse_temp - tempR))/(tempH - tempR));
VADCM = ((float)raw_value * INT1VM)/ADC_12BIT_FULL_SCALE_VALUE_FLOAT;
// Fine Temp Calculation by replace INT1V=1V by INT1V = INT1Vm for ADC conversion
float fine_temp = tempR + (((tempH - tempR)/(VADCH - VADCR)) * (VADCM - VADCR));
return fine_temp;
}
#endif // SAMD21
#ifdef SAM_D5X_E5X
STATIC float calculate_temperature(uint16_t TP, uint16_t TC) {
uint32_t TLI = (*(uint32_t *)FUSES_ROOM_TEMP_VAL_INT_ADDR & FUSES_ROOM_TEMP_VAL_INT_Msk) >> FUSES_ROOM_TEMP_VAL_INT_Pos;
uint32_t TLD = (*(uint32_t *)FUSES_ROOM_TEMP_VAL_DEC_ADDR & FUSES_ROOM_TEMP_VAL_DEC_Msk) >> FUSES_ROOM_TEMP_VAL_DEC_Pos;
float TL = TLI + convert_dec_to_frac(TLD);
uint32_t THI = (*(uint32_t *)FUSES_HOT_TEMP_VAL_INT_ADDR & FUSES_HOT_TEMP_VAL_INT_Msk) >> FUSES_HOT_TEMP_VAL_INT_Pos;
uint32_t THD = (*(uint32_t *)FUSES_HOT_TEMP_VAL_DEC_ADDR & FUSES_HOT_TEMP_VAL_DEC_Msk) >> FUSES_HOT_TEMP_VAL_DEC_Pos;
float TH = THI + convert_dec_to_frac(THD);
uint16_t VPL = (*(uint32_t *)FUSES_ROOM_ADC_VAL_PTAT_ADDR & FUSES_ROOM_ADC_VAL_PTAT_Msk) >> FUSES_ROOM_ADC_VAL_PTAT_Pos;
uint16_t VPH = (*(uint32_t *)FUSES_HOT_ADC_VAL_PTAT_ADDR & FUSES_HOT_ADC_VAL_PTAT_Msk) >> FUSES_HOT_ADC_VAL_PTAT_Pos;
uint16_t VCL = (*(uint32_t *)FUSES_ROOM_ADC_VAL_CTAT_ADDR & FUSES_ROOM_ADC_VAL_CTAT_Msk) >> FUSES_ROOM_ADC_VAL_CTAT_Pos;
uint16_t VCH = (*(uint32_t *)FUSES_HOT_ADC_VAL_CTAT_ADDR & FUSES_HOT_ADC_VAL_CTAT_Msk) >> FUSES_HOT_ADC_VAL_CTAT_Pos;
// From SAMD51 datasheet: section 45.6.3.1 (page 1327).
return (TL*VPH*TC - VPL*TH*TC - TL*VCH*TP + TH*VCL*TP) / (VCL*TP - VCH*TP - VPL*TC + VPH*TC);
}
#endif // SAMD51
float common_hal_mcu_processor_get_temperature(void) {
struct adc_sync_descriptor adc;
static Adc* adc_insts[] = ADC_INSTS;
samd_peripherals_adc_setup(&adc, adc_insts[0]);
#ifdef SAMD21
// The parameters chosen here are from the temperature example in:
// http://www.atmel.com/images/Atmel-42645-ADC-Configurations-with-Examples_ApplicationNote_AT11481.pdf
// That note also recommends in general:
// "Discard the first conversion result whenever there is a change
// in ADC configuration like voltage reference / ADC channel change."
adc_sync_set_resolution(&adc, ADC_CTRLB_RESSEL_12BIT_Val);
adc_sync_set_reference(&adc, ADC_REFCTRL_REFSEL_INT1V_Val);
2019-10-12 15:42:15 -04:00
// Channel arg is ignored.
adc_sync_enable_channel(&adc, IGNORED_CHANNEL);
adc_sync_set_inputs(&adc,
ADC_INPUTCTRL_MUXPOS_TEMP_Val, // pos_input
ADC_INPUTCTRL_MUXNEG_GND_Val, // neg_input
2019-10-12 15:42:15 -04:00
IGNORED_CHANNEL); // channel (ignored)
hri_adc_write_CTRLB_PRESCALER_bf(adc.device.hw, ADC_CTRLB_PRESCALER_DIV32_Val);
hri_adc_write_SAMPCTRL_SAMPLEN_bf(adc.device.hw, ADC_TEMP_SAMPLE_LENGTH);
hri_sysctrl_set_VREF_TSEN_bit(SYSCTRL);
// Oversample and decimate. A higher samplenum produces a more stable result.
hri_adc_write_AVGCTRL_SAMPLENUM_bf(adc.device.hw, ADC_AVGCTRL_SAMPLENUM_4_Val);
hri_adc_write_AVGCTRL_ADJRES_bf(adc.device.hw, 2);
volatile uint16_t value;
// Read twice and discard first result, as recommended in section 14 of
// http://www.atmel.com/images/Atmel-42645-ADC-Configurations-with-Examples_ApplicationNote_AT11481.pdf
// "Discard the first conversion result whenever there is a change in ADC configuration
// like voltage reference / ADC channel change"
// Empirical observation shows the first reading is quite different than subsequent ones.
2019-10-12 15:42:15 -04:00
// Channel arg is ignored.
adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t*) &value), 2);
adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t*) &value), 2);
adc_sync_deinit(&adc);
return calculate_temperature(value);
#endif // SAMD21
#ifdef SAM_D5X_E5X
adc_sync_set_resolution(&adc, ADC_CTRLB_RESSEL_12BIT_Val);
2019-10-12 15:42:15 -04:00
// Using INTVCC0 as the reference voltage.
// INTVCC1 seems to read a little high.
2019-10-12 15:42:15 -04:00
// INTREF doesn't work: ADC hangs BUSY. It's supposed to work, but does not.
// The SAME54 example from Atmel START implicitly uses INTREF.
adc_sync_set_reference(&adc, ADC_REFCTRL_REFSEL_INTVCC0_Val);
hri_supc_set_VREF_ONDEMAND_bit(SUPC);
2019-10-12 15:42:15 -04:00
// Enable temperature sensor.
hri_supc_set_VREF_TSEN_bit(SUPC);
2019-10-12 15:42:15 -04:00
hri_supc_set_VREF_VREFOE_bit(SUPC);
2019-10-12 15:42:15 -04:00
// Channel arg is ignored.
adc_sync_enable_channel(&adc, IGNORED_CHANNEL);
adc_sync_set_inputs(&adc,
ADC_INPUTCTRL_MUXPOS_PTAT_Val, // pos_input
ADC_INPUTCTRL_MUXNEG_GND_Val, // neg_input
2019-10-12 15:42:15 -04:00
IGNORED_CHANNEL); // channel (ignored)
// Read both temperature sensors.
volatile uint16_t ptat;
volatile uint16_t ctat;
2019-10-12 15:42:15 -04:00
// Read twice for stability (necessary?).
adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t*) &ptat), 2);
adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t*) &ptat), 2);
adc_sync_set_inputs(&adc,
ADC_INPUTCTRL_MUXPOS_CTAT_Val, // pos_input
ADC_INPUTCTRL_MUXNEG_GND_Val, // neg_input
2019-10-12 15:42:15 -04:00
IGNORED_CHANNEL); // channel (ignored)
adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t*) &ctat), 2);
adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t*) &ctat), 2);
// Turn off temp sensor.
hri_supc_clear_VREF_TSEN_bit(SUPC);
adc_sync_deinit(&adc);
return calculate_temperature(ptat, ctat);
#endif // SAMD51
}
2019-10-12 15:42:15 -04:00
float common_hal_mcu_processor_get_voltage(void) {
#if MICROCONTROLLER_VOLTAGE_DISABLE
return NAN;
#else
2019-10-12 15:42:15 -04:00
struct adc_sync_descriptor adc;
static Adc* adc_insts[] = ADC_INSTS;
samd_peripherals_adc_setup(&adc, adc_insts[0]);
#ifdef SAMD21
adc_sync_set_reference(&adc, ADC_REFCTRL_REFSEL_INT1V_Val);
#endif
#ifdef SAM_D5X_E5X
2019-10-12 15:42:15 -04:00
hri_supc_set_VREF_SEL_bf(SUPC, SUPC_VREF_SEL_1V0_Val);
hri_supc_set_VREF_VREFOE_bit(SUPC);
2019-10-12 15:42:15 -04:00
adc_sync_set_reference(&adc, ADC_REFCTRL_REFSEL_INTREF_Val);
// On some processor samples, the ADC will hang trying to read the voltage. A simple
// delay after setting the SUPC bits seems to fix things. This appears to be due to VREFOE
// startup time. There is no synchronization bit to check.
// See https://community.atmel.com/forum/samd51-using-intref-adc-voltage-reference
mp_hal_delay_ms(1);
2019-10-12 15:42:15 -04:00
#endif
adc_sync_set_resolution(&adc, ADC_CTRLB_RESSEL_12BIT_Val);
// Channel arg is ignored.
adc_sync_set_inputs(&adc,
ADC_INPUTCTRL_MUXPOS_SCALEDIOVCC_Val, // IOVCC/4 (nominal 3.3V/4)
ADC_INPUTCTRL_MUXNEG_GND_Val, // neg_input
IGNORED_CHANNEL); // channel (ignored).
adc_sync_enable_channel(&adc, IGNORED_CHANNEL);
volatile uint16_t reading;
// Channel arg is ignored.
// Read twice and discard first result, as recommended in section 14 of
// http://www.atmel.com/images/Atmel-42645-ADC-Configurations-with-Examples_ApplicationNote_AT11481.pdf
// "Discard the first conversion result whenever there is a change in ADC configuration
// like voltage reference / ADC channel change"
// Empirical observation shows the first reading is quite different than subsequent ones.
adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t*) &reading), 2);
adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t*) &reading), 2);
adc_sync_deinit(&adc);
// Multiply by 4 to compensate for SCALEDIOVCC division by 4.
return (reading / 4095.0f) * 4.0f;
#endif
2019-10-12 15:42:15 -04:00
}
uint32_t common_hal_mcu_processor_get_frequency(void) {
// TODO(tannewt): Determine this dynamically.
return CONF_CPU_FREQUENCY;
}
void common_hal_mcu_processor_get_uid(uint8_t raw_id[]) {
#ifdef SAMD21
uint32_t* id_addresses[4] = {(uint32_t *) 0x0080A00C, (uint32_t *) 0x0080A040,
(uint32_t *) 0x0080A044, (uint32_t *) 0x0080A048};
#endif
#ifdef SAM_D5X_E5X
uint32_t* id_addresses[4] = {(uint32_t *) 0x008061FC, (uint32_t *) 0x00806010,
(uint32_t *) 0x00806014, (uint32_t *) 0x00806018};
#endif
for (int i=0; i<4; i++) {
for (int k=0; k<4; k++) {
raw_id[4 * i + k] = (*(id_addresses[i]) >> k * 8) & 0xff;
}
}
}
mcu_reset_reason_t common_hal_mcu_processor_get_reset_reason(void) {
return RESET_REASON_POWER_ON;
}