circuitpython/atmel-samd/common-hal/busio/SPI.c

242 lines
7.9 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/busio/SPI.h"
#include "py/nlr.h"
#include "py/runtime.h"
#include "rgb_led_status.h"
#include "samd21_pins.h"
// We use ENABLE registers below we don't want to treat as a macro.
#undef ENABLE
// Number of times to try to send packet if failed.
#define TIMEOUT 1
void common_hal_busio_spi_construct(busio_spi_obj_t *self,
const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi,
const mcu_pin_obj_t * miso) {
struct spi_config config_spi_master;
spi_get_config_defaults(&config_spi_master);
Sercom* sercom = NULL;
uint32_t clock_pinmux = 0;
bool mosi_none = mosi == mp_const_none;
bool miso_none = miso == mp_const_none;
uint32_t mosi_pinmux = 0;
uint32_t miso_pinmux = 0;
uint8_t clock_pad = 0;
uint8_t mosi_pad = 0;
uint8_t miso_pad = 0;
for (int i = 0; i < NUM_SERCOMS_PER_PIN; i++) {
Sercom* potential_sercom = clock->sercom[i].sercom;
if (potential_sercom == NULL ||
#if defined(MICROPY_HW_APA102_SCK) && defined(MICROPY_HW_APA102_MOSI) && !defined(CIRCUITPY_BITBANG_APA102)
(potential_sercom->SPI.CTRLA.bit.ENABLE != 0 &&
potential_sercom != status_apa102.spi_master_instance.hw &&
!apa102_sck_in_use)) {
#else
potential_sercom->SPI.CTRLA.bit.ENABLE != 0) {
#endif
continue;
}
clock_pinmux = PINMUX(clock->pin, (i == 0) ? MUX_C : MUX_D);
clock_pad = clock->sercom[i].pad;
for (int j = 0; j < NUM_SERCOMS_PER_PIN; j++) {
if (!mosi_none) {
if(potential_sercom == mosi->sercom[j].sercom) {
mosi_pinmux = PINMUX(mosi->pin, (j == 0) ? MUX_C : MUX_D);
mosi_pad = mosi->sercom[j].pad;
if (miso_none) {
sercom = potential_sercom;
break;
}
} else {
continue;
}
}
if (!miso_none) {
for (int k = 0; k < NUM_SERCOMS_PER_PIN; k++) {
if (potential_sercom == miso->sercom[k].sercom) {
miso_pinmux = PINMUX(miso->pin, (k == 0) ? MUX_C : MUX_D);
miso_pad = miso->sercom[k].pad;
sercom = potential_sercom;
break;
}
}
}
if (sercom != NULL) {
break;
}
}
if (sercom != NULL) {
break;
}
}
if (sercom == NULL) {
mp_raise_ValueError("Invalid pins");
}
// Depends on where MOSI and CLK are.
uint8_t dopo = 8;
if (clock_pad == 1) {
if (mosi_pad == 0) {
dopo = 0;
} else if (mosi_pad == 3) {
dopo = 2;
}
} else if (clock_pad == 3) {
if (mosi_pad == 0) {
dopo = 3;
} else if (mosi_pad == 2) {
dopo = 1;
}
}
if (dopo == 8) {
mp_raise_ValueError("MOSI and clock pins incompatible");
}
config_spi_master.mux_setting = (dopo << SERCOM_SPI_CTRLA_DOPO_Pos) |
(miso_pad << SERCOM_SPI_CTRLA_DIPO_Pos);
// Map pad to pinmux through a short array.
uint32_t *pinmuxes[4] = {&config_spi_master.pinmux_pad0,
&config_spi_master.pinmux_pad1,
&config_spi_master.pinmux_pad2,
&config_spi_master.pinmux_pad3};
*pinmuxes[clock_pad] = clock_pinmux;
self->clock_pin = clock->pin;
claim_pin(clock);
self->MOSI_pin = NO_PIN;
if (!mosi_none) {
*pinmuxes[mosi_pad] = mosi_pinmux;
self->MOSI_pin = mosi->pin;
claim_pin(mosi);
}
self->MISO_pin = NO_PIN;
if (!miso_none) {
*pinmuxes[miso_pad] = miso_pinmux;
self->MISO_pin = miso->pin;
claim_pin(miso);
}
// Always start at 250khz which is what SD cards need. They are sensitive to
// SPI bus noise before they are put into SPI mode.
self->current_baudrate = 250000;
config_spi_master.mode_specific.master.baudrate = self->current_baudrate;
spi_init(&self->spi_master_instance, sercom, &config_spi_master);
spi_enable(&self->spi_master_instance);
}
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
spi_disable(&self->spi_master_instance);
reset_pin(self->clock_pin);
reset_pin(self->MOSI_pin);
reset_pin(self->MISO_pin);
}
bool common_hal_busio_spi_configure(busio_spi_obj_t *self,
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
// TODO(tannewt): Check baudrate first before changing it.
if (baudrate != self->current_baudrate) {
enum status_code status = spi_set_baudrate(&self->spi_master_instance, baudrate);
if (status != STATUS_OK) {
return false;
}
}
SercomSpi *const spi_module = &(self->spi_master_instance.hw->SPI);
// If the settings are already what we want then don't reset them.
if (spi_module->CTRLA.bit.CPHA == phase &&
spi_module->CTRLA.bit.CPOL == polarity &&
spi_module->CTRLB.bit.CHSIZE == (bits - 8)) {
return true;
}
spi_disable(&self->spi_master_instance);
while (spi_is_syncing(&self->spi_master_instance)) {
/* Wait until the synchronization is complete */
}
spi_module->CTRLA.bit.CPHA = phase;
spi_module->CTRLA.bit.CPOL = polarity;
spi_module->CTRLB.bit.CHSIZE = bits - 8;
while (spi_is_syncing(&self->spi_master_instance)) {
/* Wait until the synchronization is complete */
}
/* Enable the module */
spi_enable(&self->spi_master_instance);
while (spi_is_syncing(&self->spi_master_instance)) {
/* Wait until the synchronization is complete */
}
return true;
}
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
self->has_lock = spi_lock(&self->spi_master_instance) == STATUS_OK;
return self->has_lock;
}
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
self->has_lock = false;
spi_unlock(&self->spi_master_instance);
}
bool common_hal_busio_spi_write(busio_spi_obj_t *self,
const uint8_t *data, size_t len) {
if (len == 0) {
return true;
}
enum status_code status = spi_write_buffer_wait(
&self->spi_master_instance,
data,
len);
return status == STATUS_OK;
}
bool common_hal_busio_spi_read(busio_spi_obj_t *self,
uint8_t *data, size_t len, uint8_t write_value) {
if (len == 0) {
return true;
}
enum status_code status = spi_read_buffer_wait(
&self->spi_master_instance,
data,
len,
write_value);
return status == STATUS_OK;
}