2019-10-09 09:45:27 -04:00
|
|
|
# Copyright (c) 2019 Project Nayuki. (MIT License)
|
|
|
|
# https://www.nayuki.io/page/free-small-fft-in-multiple-languages
|
|
|
|
|
|
|
|
import math, cmath
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2019-10-09 09:45:27 -04:00
|
|
|
def transform_radix2(vector, inverse):
|
|
|
|
# Returns the integer whose value is the reverse of the lowest 'bits' bits of the integer 'x'.
|
|
|
|
def reverse(x, bits):
|
|
|
|
y = 0
|
|
|
|
for i in range(bits):
|
|
|
|
y = (y << 1) | (x & 1)
|
|
|
|
x >>= 1
|
|
|
|
return y
|
|
|
|
|
|
|
|
# Initialization
|
|
|
|
n = len(vector)
|
2021-09-13 04:27:39 -04:00
|
|
|
levels = int(math.log(n) / math.log(2))
|
2019-10-09 09:45:27 -04:00
|
|
|
coef = (2 if inverse else -2) * cmath.pi / n
|
|
|
|
exptable = [cmath.rect(1, i * coef) for i in range(n // 2)]
|
|
|
|
vector = [vector[reverse(i, levels)] for i in range(n)] # Copy with bit-reversed permutation
|
|
|
|
|
|
|
|
# Radix-2 decimation-in-time FFT
|
|
|
|
size = 2
|
|
|
|
while size <= n:
|
|
|
|
halfsize = size // 2
|
|
|
|
tablestep = n // size
|
|
|
|
for i in range(0, n, size):
|
|
|
|
k = 0
|
|
|
|
for j in range(i, i + halfsize):
|
|
|
|
temp = vector[j + halfsize] * exptable[k]
|
|
|
|
vector[j + halfsize] = vector[j] - temp
|
|
|
|
vector[j] += temp
|
|
|
|
k += tablestep
|
|
|
|
size *= 2
|
|
|
|
return vector
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2019-10-09 09:45:27 -04:00
|
|
|
###########################################################################
|
|
|
|
# Benchmark interface
|
|
|
|
|
|
|
|
bm_params = {
|
|
|
|
(50, 25): (2, 128),
|
|
|
|
(100, 100): (3, 256),
|
|
|
|
(1000, 1000): (20, 512),
|
|
|
|
(5000, 1000): (100, 512),
|
|
|
|
}
|
|
|
|
|
2020-03-22 22:26:08 -04:00
|
|
|
|
2019-10-09 09:45:27 -04:00
|
|
|
def bm_setup(params):
|
|
|
|
state = None
|
|
|
|
signal = [math.cos(2 * math.pi * i / params[1]) + 0j for i in range(params[1])]
|
|
|
|
fft = None
|
|
|
|
fft_inv = None
|
|
|
|
|
|
|
|
def run():
|
|
|
|
nonlocal fft, fft_inv
|
|
|
|
for _ in range(params[0]):
|
|
|
|
fft = transform_radix2(signal, False)
|
|
|
|
fft_inv = transform_radix2(fft, True)
|
|
|
|
|
|
|
|
def result():
|
|
|
|
nonlocal fft, fft_inv
|
|
|
|
fft[1] -= 0.5 * params[1]
|
|
|
|
fft[-1] -= 0.5 * params[1]
|
|
|
|
fft_ok = all(abs(f) < 1e-3 for f in fft)
|
|
|
|
for i in range(len(fft_inv)):
|
|
|
|
fft_inv[i] -= params[1] * signal[i]
|
|
|
|
fft_inv_ok = all(abs(f) < 1e-3 for f in fft_inv)
|
|
|
|
return params[0] * params[1], (fft_ok, fft_inv_ok)
|
|
|
|
|
|
|
|
return run, result
|