tests/perf_bench: Add bm_fft test.
This is mostly a test of complex number performance. The FFT implementation is from Project Nayuki and is MIT licensed.
This commit is contained in:
parent
a93495b66d
commit
cfd17f4ebe
69
tests/perf_bench/bm_fft.py
Normal file
69
tests/perf_bench/bm_fft.py
Normal file
@ -0,0 +1,69 @@
|
||||
# Copyright (c) 2019 Project Nayuki. (MIT License)
|
||||
# https://www.nayuki.io/page/free-small-fft-in-multiple-languages
|
||||
|
||||
import math, cmath
|
||||
|
||||
def transform_radix2(vector, inverse):
|
||||
# Returns the integer whose value is the reverse of the lowest 'bits' bits of the integer 'x'.
|
||||
def reverse(x, bits):
|
||||
y = 0
|
||||
for i in range(bits):
|
||||
y = (y << 1) | (x & 1)
|
||||
x >>= 1
|
||||
return y
|
||||
|
||||
# Initialization
|
||||
n = len(vector)
|
||||
levels = int(math.log2(n))
|
||||
coef = (2 if inverse else -2) * cmath.pi / n
|
||||
exptable = [cmath.rect(1, i * coef) for i in range(n // 2)]
|
||||
vector = [vector[reverse(i, levels)] for i in range(n)] # Copy with bit-reversed permutation
|
||||
|
||||
# Radix-2 decimation-in-time FFT
|
||||
size = 2
|
||||
while size <= n:
|
||||
halfsize = size // 2
|
||||
tablestep = n // size
|
||||
for i in range(0, n, size):
|
||||
k = 0
|
||||
for j in range(i, i + halfsize):
|
||||
temp = vector[j + halfsize] * exptable[k]
|
||||
vector[j + halfsize] = vector[j] - temp
|
||||
vector[j] += temp
|
||||
k += tablestep
|
||||
size *= 2
|
||||
return vector
|
||||
|
||||
###########################################################################
|
||||
# Benchmark interface
|
||||
|
||||
bm_params = {
|
||||
(50, 25): (2, 128),
|
||||
(100, 100): (3, 256),
|
||||
(1000, 1000): (20, 512),
|
||||
(5000, 1000): (100, 512),
|
||||
}
|
||||
|
||||
def bm_setup(params):
|
||||
state = None
|
||||
signal = [math.cos(2 * math.pi * i / params[1]) + 0j for i in range(params[1])]
|
||||
fft = None
|
||||
fft_inv = None
|
||||
|
||||
def run():
|
||||
nonlocal fft, fft_inv
|
||||
for _ in range(params[0]):
|
||||
fft = transform_radix2(signal, False)
|
||||
fft_inv = transform_radix2(fft, True)
|
||||
|
||||
def result():
|
||||
nonlocal fft, fft_inv
|
||||
fft[1] -= 0.5 * params[1]
|
||||
fft[-1] -= 0.5 * params[1]
|
||||
fft_ok = all(abs(f) < 1e-3 for f in fft)
|
||||
for i in range(len(fft_inv)):
|
||||
fft_inv[i] -= params[1] * signal[i]
|
||||
fft_inv_ok = all(abs(f) < 1e-3 for f in fft_inv)
|
||||
return params[0] * params[1], (fft_ok, fft_inv_ok)
|
||||
|
||||
return run, result
|
Loading…
Reference in New Issue
Block a user