sharp-drm-driver-radxa-zero/drm_iface.c

647 lines
16 KiB
C
Raw Permalink Normal View History

2023-06-28 23:33:41 -04:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* DRM driver for 2.7" Sharp Memory LCD
*
* Copyright 2023 Andrew D'Angelo
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
2023-06-28 23:33:41 -04:00
#include <linux/module.h>
#include <linux/property.h>
#include <linux/sched/clock.h>
#include <linux/spi/spi.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_connector.h>
#include <drm/drm_damage_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_fb_dma_helper.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_format_helper.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_managed.h>
#include <drm/drm_modes.h>
#include <drm/drm_rect.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_simple_kms_helper.h>
#include "params_iface.h"
#include "ioctl_iface.h"
#include "drm_iface.h"
2023-06-28 23:55:12 -04:00
#include "indicators.h"
2023-06-28 23:33:41 -04:00
#define CMD_WRITE_LINE 0b10000000
#define CMD_CLEAR_SCREEN 0b00100000
struct sharp_memory_panel {
struct drm_device drm;
struct drm_simple_display_pipe pipe;
const struct drm_display_mode *mode;
struct drm_connector connector;
struct spi_device *spi;
2023-06-28 23:45:12 -04:00
struct drm_framebuffer *fb;
2023-06-28 23:33:41 -04:00
struct timer_list vcom_timer;
unsigned int height;
unsigned int width;
unsigned char *buf;
struct spi_transfer *spi_3_xfers;
unsigned char *cmd_buf;
unsigned char *trailer_buf;
2023-06-28 23:55:12 -04:00
char indicators[MAX_INDICATORS];
struct gpio_desc *gpio_disp;
struct gpio_desc *gpio_vcom;
2023-06-28 23:33:41 -04:00
};
2023-06-28 23:45:12 -04:00
static struct sharp_memory_panel* g_panel = NULL;
2023-06-28 23:33:41 -04:00
static inline struct sharp_memory_panel *drm_to_panel(struct drm_device *drm)
{
return container_of(drm, struct sharp_memory_panel, drm);
}
static void vcom_timer_callback(struct timer_list *t)
{
static u8 vcom_setting = 0;
struct sharp_memory_panel *panel = from_timer(panel, t, vcom_timer);
// Toggle the GPIO pin
vcom_setting = (vcom_setting) ? 0 : 1;
gpiod_set_value(panel->gpio_vcom, 1);
2023-06-28 23:33:41 -04:00
// Reschedule the timer
mod_timer(&panel->vcom_timer, jiffies + msecs_to_jiffies(1000));
}
static int sharp_memory_spi_clear_screen(struct sharp_memory_panel *panel)
{
int rc;
// Create screen clear command SPI transfer
panel->cmd_buf[0] = CMD_CLEAR_SCREEN;
panel->spi_3_xfers[0].tx_buf = panel->cmd_buf;
panel->spi_3_xfers[0].len = 1;
panel->trailer_buf[0] = 0;
panel->spi_3_xfers[1].tx_buf = panel->trailer_buf;
panel->spi_3_xfers[1].len = 1;
// Write clear screen command
ndelay(80);
2023-06-28 23:33:41 -04:00
rc = spi_sync_transfer(panel->spi, panel->spi_3_xfers, 2);
2023-06-28 23:33:41 -04:00
return rc;
}
static inline u8 sharp_memory_reverse_byte(u8 b)
{
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b;
}
static int sharp_memory_spi_write_tagged_lines(struct sharp_memory_panel *panel,
void *line_data, size_t len)
{
int rc;
// Write line command
panel->cmd_buf[0] = 0b10000000;
panel->spi_3_xfers[0].tx_buf = panel->cmd_buf;
panel->spi_3_xfers[0].len = 1;
// Line data
panel->spi_3_xfers[1].tx_buf = line_data;
panel->spi_3_xfers[1].len = len;
// Trailer
panel->trailer_buf[0] = 0;
panel->spi_3_xfers[2].tx_buf = panel->trailer_buf;
panel->spi_3_xfers[2].len = 1;
ndelay(80);
2023-06-28 23:33:41 -04:00
rc = spi_sync_transfer(panel->spi, panel->spi_3_xfers, 3);
2023-06-28 23:33:41 -04:00
return rc;
}
2023-06-28 23:55:12 -04:00
static void draw_indicators(struct sharp_memory_panel *panel, u8* buf, int width,
struct drm_rect const* clip)
{
int i, dx, dy, sx, sy;
u8 const* ind = NULL;
for (i = 0; i < MAX_INDICATORS; i++) {
// Get indicator pixels
2023-06-29 00:03:35 -04:00
printk(KERN_INFO "Indicator %d: %d\n", i, panel->indicators[i]);
2023-06-28 23:55:12 -04:00
ind = indicator_for(panel->indicators[i]);
if (!ind) {
continue;
}
2023-06-29 00:03:35 -04:00
printk(KERN_INFO "Drawing indicator for %c\n", panel->indicators[i]);
2023-06-28 23:55:12 -04:00
// Draw indicator pixels
for (sy = 0; sy < INDICATOR_HEIGHT; sy++) {
if (sy < clip->y1) {
continue;
} else if (clip->y2 <= sy) {
break;
}
dy = sy - clip->y1;
for (sx = 0; sx < INDICATOR_WIDTH; sx++) {
if (sx < clip->x1) {
continue;
} else if (clip->x2 <= sx) {
break;
}
dx = (width - ((i + 1) * INDICATOR_WIDTH) + sx) - clip->x1;
2023-06-29 00:03:35 -04:00
printk(KERN_INFO "(%d, %d = %d) <- (%d, %d = %d) = %x\n",
dx, dy,
dy * (clip->x2 - clip->x1) + dx,
sx, sy,
sy * INDICATOR_HEIGHT + sx,
ind[sy * INDICATOR_HEIGHT + sx]
);
2023-06-28 23:55:12 -04:00
buf[dy * (clip->x2 - clip->x1) + dx] = ind[sy * INDICATOR_HEIGHT + sx];
}
}
}
}
2023-06-28 23:33:41 -04:00
static size_t sharp_memory_gray8_to_mono_tagged(u8 *buf, int width, int height, int y0)
{
int line, b8, b1;
unsigned char d;
int const tagged_line_len = 2 + width / 8;
// Iterate over lines from [0, height)
for (line = 0; line < height; line++) {
// Iterate over chunks of 8 source grayscale bytes
// Each 8-byte source chunk will map to one destination mono byte
for (b8 = 0; b8 < width; b8 += 8) {
d = 0;
// Iterate over each of the 8 grayscale bytes in the chunk
// Build up the destination mono byte
for (b1 = 0; b1 < 8; b1++) {
// Change at what gray level the mono pixel is active here
if (buf[(line * width) + b8 + b1] >= g_param_mono_cutoff) {
d |= 0b10000000 >> b1;
}
}
// Apply inversion
if (g_param_mono_invert) {
d = ~d;
}
// Without the line number and trailer tags, each destination
// mono line would have a length `width / 8`. However, we are
// inserting the line number at the beginning of the line and
// the zero-byte trailer at the end.
// So the destination mono line is at index
// `line * tagged_line_len = line * (2 + width / 8)`
// The destination mono byte is offset by 1 to make room for
// the line tag, written at the end of converting the current
// line.
buf[(line * tagged_line_len) + 1 + (b8 / 8)] = d;
}
// Write the line number and trailer tags
buf[line * tagged_line_len] = sharp_memory_reverse_byte((u8)(y0 + 1)); // Indexed from 1
buf[(line * tagged_line_len) + tagged_line_len - 1] = 0;
y0++;
}
return height * tagged_line_len;
}
// Use DMA to get grayscale representation, then convert to mono
// with line number and trailer tags suitable for multi-line write
// Output is stored in `buf`, which must be at least W*H bytes
2023-06-28 23:55:12 -04:00
static int sharp_memory_clip_mono_tagged(struct sharp_memory_panel* panel, size_t* result_len,
u8* buf, struct drm_framebuffer *fb, struct drm_rect const* clip)
2023-06-28 23:33:41 -04:00
{
int rc;
struct drm_gem_dma_object *dma_obj;
struct iosys_map dst, vmap;
// Get GEM memory manager
dma_obj = drm_fb_dma_get_gem_obj(fb, 0);
// Start DMA area
rc = drm_gem_fb_begin_cpu_access(fb, DMA_FROM_DEVICE);
if (rc) {
return rc;
}
// Initialize destination (buf) and source (video)
iosys_map_set_vaddr(&dst, buf);
iosys_map_set_vaddr(&vmap, dma_obj->vaddr);
// DMA `clip` into `buf` and convert to 8-bit grayscale
2023-06-28 23:55:12 -04:00
drm_fb_xrgb8888_to_gray8(&dst, NULL, &vmap, fb, clip);
2023-06-28 23:33:41 -04:00
// End DMA area
drm_gem_fb_end_cpu_access(fb, DMA_FROM_DEVICE);
2023-06-29 00:59:10 -04:00
// Add status indicators
if (g_param_indicators) {
// Only redraw indicators if the dirty region would overwrite them
if ((clip->x1 < (fb->width - INDICATORS_WIDTH))
&& (clip->y1 < INDICATOR_HEIGHT)) {
draw_indicators(panel, buf, fb->width, clip);
}
2023-06-28 23:55:12 -04:00
}
2023-06-28 23:33:41 -04:00
// Convert in-place from 8-bit grayscale to mono
*result_len = sharp_memory_gray8_to_mono_tagged(buf,
(clip->x2 - clip->x1), (clip->y2 - clip->y1), clip->y1);
// Success
return 0;
}
static int sharp_memory_fb_dirty(struct drm_framebuffer *fb,
struct drm_rect const* dirty_rect)
{
int rc;
struct drm_rect clip;
struct sharp_memory_panel *panel;
int drm_idx;
size_t buf_len;
// Clip dirty region rows
clip.x1 = 0;
clip.x2 = fb->width;
clip.y1 = dirty_rect->y1;
clip.y2 = dirty_rect->y2;
// Get panel info from DRM struct
panel = drm_to_panel(fb->dev);
// Enter DRM device resource area
if (!drm_dev_enter(fb->dev, &drm_idx)) {
return -ENODEV;
}
// Convert `clip` from framebuffer to mono with line number tags
2023-06-28 23:55:12 -04:00
rc = sharp_memory_clip_mono_tagged(panel, &buf_len, panel->buf, fb, &clip);
2023-06-28 23:33:41 -04:00
if (rc) {
goto out_exit;
}
// Write mono data to display
rc = sharp_memory_spi_write_tagged_lines(panel, panel->buf, buf_len);
out_exit:
// Exit DRM device resource area
drm_dev_exit(drm_idx);
return rc;
}
static void power_off(struct sharp_memory_panel *panel)
{
printk(KERN_INFO "sharp_memory: powering off\n");
/* Turn off power and all signals */
gpiod_set_value(panel->gpio_disp, 0);
gpiod_set_value(panel->gpio_vcom, 0);
2023-06-28 23:33:41 -04:00
}
static void sharp_memory_pipe_enable(struct drm_simple_display_pipe *pipe,
struct drm_crtc_state *crtc_state, struct drm_plane_state *plane_state)
{
struct sharp_memory_panel *panel;
struct spi_device *spi;
int drm_idx;
printk(KERN_INFO "sharp_memory: entering sharp_memory_pipe_enable\n");
// Get panel and SPI device structs
panel = drm_to_panel(pipe->crtc.dev);
spi = panel->spi;
// Enter DRM resource area
if (!drm_dev_enter(pipe->crtc.dev, &drm_idx)) {
return;
}
// Power up sequence
gpiod_set_value(panel->gpio_disp, 1);
gpiod_set_value(panel->gpio_vcom, 0);
2023-06-28 23:33:41 -04:00
usleep_range(5000, 10000);
// Clear display
if (sharp_memory_spi_clear_screen(panel)) {
gpiod_set_value(panel->gpio_disp, 0); // Power down display, VCOM is not running
2023-06-28 23:33:41 -04:00
goto out_exit;
}
// Initialize and schedule the VCOM timer
timer_setup(&panel->vcom_timer, vcom_timer_callback, 0);
mod_timer(&panel->vcom_timer, jiffies + msecs_to_jiffies(500));
printk(KERN_INFO "sharp_memory: completed sharp_memory_pipe_enable\n");
out_exit:
drm_dev_exit(drm_idx);
}
static void sharp_memory_pipe_disable(struct drm_simple_display_pipe *pipe)
{
struct sharp_memory_panel *panel;
struct spi_device *spi;
printk(KERN_INFO "sharp_memory: sharp_memory_pipe_disable\n");
// Get panel and SPI device structs
panel = drm_to_panel(pipe->crtc.dev);
spi = panel->spi;
// Cancel the timer
del_timer_sync(&panel->vcom_timer);
power_off(panel);
}
static void sharp_memory_pipe_update(struct drm_simple_display_pipe *pipe,
struct drm_plane_state *old_state)
{
struct drm_plane_state *state = pipe->plane.state;
struct drm_rect rect;
if (!pipe->crtc.state->active) {
return;
}
if (drm_atomic_helper_damage_merged(old_state, state, &rect)) {
sharp_memory_fb_dirty(state->fb, &rect);
}
}
static const struct drm_simple_display_pipe_funcs sharp_memory_pipe_funcs = {
.enable = sharp_memory_pipe_enable,
.disable = sharp_memory_pipe_disable,
.update = sharp_memory_pipe_update,
.prepare_fb = drm_gem_simple_display_pipe_prepare_fb,
};
static int sharp_memory_connector_get_modes(struct drm_connector *connector)
{
struct sharp_memory_panel *panel = drm_to_panel(connector->dev);
return drm_connector_helper_get_modes_fixed(connector, panel->mode);
}
2023-06-28 23:45:12 -04:00
static struct drm_framebuffer* create_and_store_fb(struct drm_device *dev, struct drm_file *file,
const struct drm_mode_fb_cmd2 *mode_cmd)
{
struct drm_framebuffer* fb;
// Initialize framebuffer
fb = drm_gem_fb_create_with_dirty(dev, file, mode_cmd);
// Store global framebuffer for external operations
if (g_panel) {
g_panel->fb = fb;
}
return fb;
}
2023-06-28 23:33:41 -04:00
static const struct drm_connector_helper_funcs sharp_memory_connector_hfuncs = {
.get_modes = sharp_memory_connector_get_modes,
};
static const struct drm_connector_funcs sharp_memory_connector_funcs = {
.reset = drm_atomic_helper_connector_reset,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static const struct drm_mode_config_funcs sharp_memory_mode_config_funcs = {
2023-06-28 23:45:12 -04:00
.fb_create = create_and_store_fb,
2023-06-28 23:33:41 -04:00
.atomic_check = drm_atomic_helper_check,
.atomic_commit = drm_atomic_helper_commit,
};
static const uint32_t sharp_memory_formats[] = {
DRM_FORMAT_XRGB8888,
};
static const struct drm_display_mode sharp_memory_ls027b7dh01_mode = {
DRM_SIMPLE_MODE(400, 240, 59, 35),
};
DEFINE_DRM_GEM_DMA_FOPS(sharp_memory_fops);
static const struct drm_driver sharp_memory_driver = {
.driver_features = DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC,
.fops = &sharp_memory_fops,
DRM_GEM_DMA_DRIVER_OPS_VMAP,
.name = "sharp_memory",
.desc = "Sharp Memory LCD panel",
.date = "20230526",
.major = 1,
.minor = 0,
};
int drm_probe(struct spi_device *spi)
{
const struct drm_display_mode *mode;
struct device *dev;
struct sharp_memory_panel *panel;
struct drm_device *drm;
2023-06-28 23:55:12 -04:00
int ret, i;
2023-06-28 23:33:41 -04:00
printk(KERN_INFO "sharp_memory: entering drm_probe\n");
// Get DRM device from SPI struct
dev = &spi->dev;
// The SPI device is used to allocate DMA memory
if (!dev->coherent_dma_mask) {
ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret) {
dev_warn(dev, "Failed to set dma mask %d\n", ret);
return ret;
}
}
// Allocate panel storage
panel = devm_drm_dev_alloc(dev, &sharp_memory_driver,
struct sharp_memory_panel, drm);
if (IS_ERR(panel)) {
printk(KERN_ERR "sharp_memory: failed to allocate panel\n");
return PTR_ERR(panel);
}
g_panel = panel;
// Initialize GPIO
panel->gpio_disp = devm_gpiod_get(dev, "disp", GPIOD_OUT_HIGH);
if (IS_ERR(panel->gpio_disp))
return dev_err_probe(dev, PTR_ERR(panel->gpio_disp), "Failed to get GPIO 'disp'\n");
panel->gpio_vcom = devm_gpiod_get(dev, "vcom", GPIOD_OUT_LOW);
if (IS_ERR(panel->gpio_vcom))
return dev_err_probe(dev, PTR_ERR(panel->gpio_vcom), "Failed to get GPIO 'vcom'\n");
2023-06-28 23:33:41 -04:00
// Initalize DRM mode
drm = &panel->drm;
ret = drmm_mode_config_init(drm);
if (ret) {
return ret;
}
drm->mode_config.funcs = &sharp_memory_mode_config_funcs;
// Initialize panel contents
panel->spi = spi;
mode = &sharp_memory_ls027b7dh01_mode;
panel->mode = mode;
panel->width = mode->hdisplay;
panel->height = mode->vdisplay;
2023-06-28 23:55:12 -04:00
for (i = 0; i < MAX_INDICATORS; i++) {
panel->indicators[i] = '\0';
}
2023-06-28 23:33:41 -04:00
// Allocate reused heap buffers suitable for SPI source
panel->buf = devm_kzalloc(dev, panel->width * panel->height, GFP_KERNEL);
panel->spi_3_xfers = devm_kzalloc(dev, sizeof(struct spi_transfer) * 3, GFP_KERNEL);
panel->cmd_buf = devm_kzalloc(dev, 1, GFP_KERNEL);
panel->trailer_buf = devm_kzalloc(dev, 1, GFP_KERNEL);
// DRM mode settings
drm->mode_config.min_width = mode->hdisplay;
drm->mode_config.max_width = mode->hdisplay;
drm->mode_config.min_height = mode->vdisplay;
drm->mode_config.max_height = mode->vdisplay;
// Configure DRM connector
ret = drm_connector_init(drm, &panel->connector, &sharp_memory_connector_funcs,
DRM_MODE_CONNECTOR_SPI);
if (ret) {
return ret;
}
drm_connector_helper_add(&panel->connector, &sharp_memory_connector_hfuncs);
// Initialize DRM pipe
ret = drm_simple_display_pipe_init(drm, &panel->pipe, &sharp_memory_pipe_funcs,
sharp_memory_formats, ARRAY_SIZE(sharp_memory_formats),
NULL, &panel->connector);
if (ret) {
return ret;
}
// Enable damaged screen area clips
drm_plane_enable_fb_damage_clips(&panel->pipe.plane);
drm_mode_config_reset(drm);
printk(KERN_INFO "sharp_memory: registering DRM device\n");
ret = drm_dev_register(drm, 0);
if (ret) {
return ret;
}
// fbdev setup
spi_set_drvdata(spi, drm);
drm_fbdev_generic_setup(drm, 0);
printk(KERN_INFO "sharp_memory: successful probe\n");
return 0;
}
void drm_remove(struct spi_device *spi)
{
struct drm_device *drm;
struct device *dev;
struct sharp_memory_panel *panel;
2023-06-28 23:33:41 -04:00
2023-06-28 23:55:12 -04:00
printk(KERN_INFO "sharp_memory: drm_remove\n");
2023-06-28 23:33:41 -04:00
2023-06-28 23:45:12 -04:00
// Clear global panel
g_panel = NULL;
2023-06-28 23:33:41 -04:00
// Get DRM and panel device from SPI
drm = spi_get_drvdata(spi);
// Clean up the GPIO descriptors
dev = &spi->dev;
2023-07-11 18:43:35 -04:00
panel = drm_to_panel(drm);
2023-07-11 01:16:49 -04:00
devm_gpiod_put(dev, panel->gpio_disp);
devm_gpiod_put(dev, panel->gpio_vcom);
2023-06-28 23:33:41 -04:00
drm_dev_unplug(drm);
drm_atomic_helper_shutdown(drm);
}
2023-06-28 23:55:12 -04:00
int drm_refresh(void)
2023-06-28 23:33:41 -04:00
{
2023-06-28 23:55:12 -04:00
struct drm_rect dirty_rect;
if (!g_panel || !g_panel->fb) {
return 0;
}
// Refresh framebuffer
dirty_rect.x1 = 0;
dirty_rect.x2 = g_panel->fb->width;
dirty_rect.y1 = 0;
dirty_rect.y2 = g_panel->fb->height;
return sharp_memory_fb_dirty(g_panel->fb, &dirty_rect);
2023-06-28 23:33:41 -04:00
}
2023-06-28 23:55:12 -04:00
int drm_set_indicator(size_t idx, char c)
2023-06-28 23:33:41 -04:00
{
2023-06-28 23:45:12 -04:00
struct drm_rect dirty_rect;
2023-06-29 00:03:35 -04:00
printk(KERN_INFO "Setting indicator %zu to %c\n", idx, c);
2023-06-28 23:55:12 -04:00
if (!g_panel || !g_panel->fb) {
return -1;
}
2023-06-28 23:45:12 -04:00
2023-06-28 23:55:12 -04:00
// Set indicator
if (idx >= MAX_INDICATORS) {
return -1;
2023-06-28 23:45:12 -04:00
}
2023-06-28 23:55:12 -04:00
g_panel->indicators[idx] = c;
2023-06-28 23:45:12 -04:00
2023-06-28 23:55:12 -04:00
// Refresh framebuffer
2023-06-29 00:03:35 -04:00
dirty_rect.x1 = 0;//g_panel->fb->width - INDICATORS_WIDTH;
2023-06-28 23:55:12 -04:00
dirty_rect.x2 = g_panel->fb->width;
dirty_rect.y1 = 0;
dirty_rect.y2 = INDICATOR_HEIGHT;
2023-06-29 00:03:35 -04:00
printk(KERN_INFO "Refreshing framebuffer\n");
2023-06-28 23:55:12 -04:00
return sharp_memory_fb_dirty(g_panel->fb, &dirty_rect);
2023-06-28 23:33:41 -04:00
}