'use strict'; var Cesium = require('cesium'); var path = require('path'); var Promise = require('bluebird'); var ArrayStorage = require('./ArrayStorage'); var loadImage = require('./loadImage'); var loadMtl = require('./loadMtl'); var readLines = require('./readLines'); var Axis = Cesium.Axis; var Cartesian2 = Cesium.Cartesian2; var Cartesian3 = Cesium.Cartesian3; var ComponentDatatype = Cesium.ComponentDatatype; var defaultValue = Cesium.defaultValue; var defined = Cesium.defined; var IntersectionTests = Cesium.IntersectionTests; var Matrix3 = Cesium.Matrix3; var Matrix4 = Cesium.Matrix4; var OrientedBoundingBox = Cesium.OrientedBoundingBox; var Plane = Cesium.Plane; var PolygonPipeline = Cesium.PolygonPipeline; var Ray = Cesium.Ray; var RuntimeError = Cesium.RuntimeError; var WindingOrder = Cesium.WindingOrder; module.exports = loadObj; // Object name (o) -> node // Group name (g) -> mesh // Material name (usemtl) -> primitive function Node() { this.name = undefined; this.meshes = []; } function Mesh() { this.name = undefined; this.primitives = []; this.positions = new ArrayStorage(ComponentDatatype.FLOAT); this.normals = new ArrayStorage(ComponentDatatype.FLOAT); this.uvs = new ArrayStorage(ComponentDatatype.FLOAT); } function Primitive() { this.material = undefined; this.indices = new ArrayStorage(ComponentDatatype.UNSIGNED_INT); } // OBJ regex patterns are modified from ThreeJS (https://github.com/mrdoob/three.js/blob/master/examples/js/loaders/OBJLoader.js) var vertexPattern = /v( +[\d|\.|\+|\-|e|E]+)( +[\d|\.|\+|\-|e|E]+)( +[\d|\.|\+|\-|e|E]+)/; // v float float float var normalPattern = /vn( +[\d|\.|\+|\-|e|E]+)( +[\d|\.|\+|\-|e|E]+)( +[\d|\.|\+|\-|e|E]+)/; // vn float float float var uvPattern = /vt( +[\d|\.|\+|\-|e|E]+)( +[\d|\.|\+|\-|e|E]+)/; // vt float float var facePattern1 = /f(\s+-?\d+\/?\/?){3,}/; // f vertex vertex vertex ... var facePattern2 = /f(\s+-?\d+\/-?\d+){3,}/; // f vertex/uv vertex/uv vertex/uv ... var facePattern3 = /f(\s+-?\d+\/-?\d+\/-?\d+){3,}/; // f vertex/uv/normal vertex/uv/normal vertex/uv/normal ... var facePattern4 = /f(\s+-?\d+\/\/-?\d+){3,}/; // f vertex//normal vertex//normal vertex//normal ... var faceSpacePattern = /f?\s+/; var faceSpaceOrSlashPattern = /(f?\s+)|(\/+\s*)/g; var scratchCartesian = new Cartesian3(); /** * Parse an obj file. * * @param {String} objPath Path to the obj file. * @param {Object} options An object with the following properties: * @param {Boolean} options.checkTransparency Do a more exhaustive check for texture transparency by looking at the alpha channel of each pixel. * @param {Boolean} options.secure Prevent the converter from reading image or mtl files outside of the input obj directory. * @param {String} options.inputUpAxis Up axis of the obj. * @param {String} options.outputUpAxis Up axis of the converted glTF. * @param {Boolean} options.logger A callback function for handling logged messages. Defaults to console.log. * @returns {Promise} A promise resolving to the obj data. * @exception {RuntimeError} The file does not have any geometry information in it. * * @private */ function loadObj(objPath, options) { var axisTransform = getAxisTransform(options.inputUpAxis, options.outputUpAxis); // Global store of vertex attributes listed in the obj file var positions = new ArrayStorage(ComponentDatatype.FLOAT); var normals = new ArrayStorage(ComponentDatatype.FLOAT); var uvs = new ArrayStorage(ComponentDatatype.FLOAT); // The current node, mesh, and primitive var node; var mesh; var primitive; // All nodes seen in the obj var nodes = []; // Used to build the indices. The vertex cache is unique to each mesh. var vertexCache = {}; var vertexCacheLimit = 1000000; var vertexCacheCount = 0; var vertexCount = 0; // All mtl paths seen in the obj var mtlPaths = []; function getName(name) { return (name === '' ? undefined : name); } function addNode(name) { node = new Node(); node.name = getName(name); nodes.push(node); addMesh(); } function addMesh(name) { mesh = new Mesh(); mesh.name = getName(name); node.meshes.push(mesh); addPrimitive(); // Clear the vertex cache for each new mesh vertexCache = {}; vertexCacheCount = 0; vertexCount = 0; } function addPrimitive() { primitive = new Primitive(); mesh.primitives.push(primitive); } function useMaterial(name) { // Look to see if this material has already been used by a primitive in the mesh var material = getName(name); var primitives = mesh.primitives; var primitivesLength = primitives.length; for (var i = 0; i < primitivesLength; ++i) { if (primitives[i].material === material) { primitive = primitives[i]; return; } } // Add a new primitive with this material addPrimitive(); primitive.material = getName(name); } var intPoint = new Cartesian3(); var xAxis = Cesium.Cartesian3.UNIT_X.clone(); var yAxis = Cesium.Cartesian3.UNIT_Y.clone(); var zAxis = Cesium.Cartesian3.UNIT_Z.clone(); var origin = new Cartesian3(); var normal = new Cartesian3(); var ray = new Ray(); var plane = new Plane(Cesium.Cartesian3.UNIT_X, 0); function projectTo2D(positions) { var positions2D = new Array(positions.length); var obb = OrientedBoundingBox.fromPoints(positions); var halfAxes = obb.halfAxes; Matrix3.getColumn(halfAxes, 0, xAxis); Matrix3.getColumn(halfAxes, 1, yAxis); Matrix3.getColumn(halfAxes, 2, zAxis); var xMag = Cartesian3.magnitude(xAxis); var yMag = Cartesian3.magnitude(yAxis); var zMag = Cartesian3.magnitude(zAxis); var min = Math.min(xMag, yMag, zMag); var center = obb.center; var planeXAxis; var planeYAxis; if (min === xMag) { if (!xAxis.equals(Cartesian3.ZERO)) { Cartesian3.add(center, xAxis, origin); Cartesian3.normalize(xAxis, normal); } planeXAxis = Cartesian3.normalize(yAxis, yAxis); planeYAxis = Cartesian3.normalize(zAxis, zAxis); } else if (min === yMag) { if (!yAxis.equals(Cartesian3.ZERO)) { Cartesian3.add(center, yAxis, origin); Cartesian3.normalize(yAxis, normal); } planeXAxis = Cartesian3.normalize(xAxis, xAxis); planeYAxis = Cartesian3.normalize(zAxis, zAxis); } else { if (!zAxis.equals(Cartesian3.ZERO)) { Cartesian3.add(center, zAxis, origin); Cartesian3.normalize(zAxis, normal); } planeXAxis = Cartesian3.normalize(xAxis, xAxis); planeYAxis = Cartesian3.normalize(yAxis, yAxis); } if (min === 0) { normal = Cartesian3.cross(planeXAxis, planeYAxis, normal); normal = Cartesian3.normalize(normal, normal); } Plane.fromPointNormal(origin, normal, plane); ray.direction = normal; for (var i = 0; i < positions.length; i++) { ray.origin = positions[i]; var intersectionPoint = IntersectionTests.rayPlane(ray, plane, intPoint); if (!defined(intersectionPoint)) { Cartesian3.negate(ray.direction, ray.direction); intersectionPoint = IntersectionTests.rayPlane(ray, plane, intPoint); } var v = Cartesian3.subtract(intersectionPoint, origin, intersectionPoint); var x = Cartesian3.dot(planeXAxis, v); var y = Cartesian3.dot(planeYAxis, v); positions2D[i] = new Cartesian2(x, y); } return positions2D; } function getOffset(a, attributeData, components) { var i = parseInt(a); if (i < 0) { // Negative vertex indexes reference the vertices immediately above it return (attributeData.length / components + i) * components; } return (i - 1) * components; } function createVertex(p, u, n) { // Positions if (defined(p)) { var pi = getOffset(p, positions, 3); var px = positions.get(pi + 0); var py = positions.get(pi + 1); var pz = positions.get(pi + 2); mesh.positions.push(px); mesh.positions.push(py); mesh.positions.push(pz); } // Normals if (defined(n)) { var ni = getOffset(n, normals, 3); var nx = normals.get(ni + 0); var ny = normals.get(ni + 1); var nz = normals.get(ni + 2); mesh.normals.push(nx); mesh.normals.push(ny); mesh.normals.push(nz); } // UVs if (defined(u)) { var ui = getOffset(u, uvs, 2); var ux = uvs.get(ui + 0); var uy = uvs.get(ui + 1); mesh.uvs.push(ux); mesh.uvs.push(uy); } } function addVertex(v, p, u, n) { var index = vertexCache[v]; if (!defined(index)) { index = vertexCount++; vertexCache[v] = index; createVertex(p, u, n); // Prevent the vertex cache from growing too large. As a result of clearing the cache there // may be some duplicate vertices. vertexCacheCount++; if (vertexCacheCount > vertexCacheLimit) { vertexCacheCount = 0; vertexCache = {}; } } return index; } function addFace(vertices, positions, uvs, normals) { var u1, u2, u3, n1, n2, n3; if (vertices.length === 3) { if (uvs) { u1 = uvs[0]; u2 = uvs[1]; u3 = uvs[2]; } if (normals) { n1 = normals[0]; n2 = normals[1]; n3 = normals[2]; } var index1 = addVertex(vertices[0], positions[0], u1, n1); var index2 = addVertex(vertices[1], positions[1], u2, n2); var index3 = addVertex(vertices[2], positions[2], u3, n3); primitive.indices.push(index1); primitive.indices.push(index2); primitive.indices.push(index3); } else { // Triangulate if the face is not a triangle var positions3D = []; var vertexIndices = []; var i; for (i=0; i < vertices.length; ++i) { var u = (defined(uvs)) ? uvs[i] : undefined; var n = (defined(normals)) ? normals[i] : undefined; var index = addVertex(vertices[i], positions[i], u, n); vertexIndices.push(index); var pi = getOffset(index+1, positions, 3); var px = mesh.positions.get(pi + 0); var py = mesh.positions.get(pi + 1); var pz = mesh.positions.get(pi + 2); positions3D.push(new Cartesian3(px, py, pz)); } var positions2D = projectTo2D(positions3D); var windingOrder = PolygonPipeline.computeWindingOrder2D(positions2D); // Since the projection doesn't respect winding order, reverse the order of // the vertices before triangulating to enforce counter clockwise. if (windingOrder === WindingOrder.CLOCKWISE) { positions2D.reverse(); } var positionIndices = PolygonPipeline.triangulate(positions2D); for (i=0; i < positionIndices.length; ++i) { primitive.indices.push(vertexIndices[positionIndices[i]]); } } } function parseLine(line) { line = line.trim(); var result; if ((line.length === 0) || (line.charAt(0) === '#')) { // Don't process empty lines or comments } else if (/^o\s/i.test(line)) { var objectName = line.substring(2).trim(); addNode(objectName); } else if (/^g\s/i.test(line)) { var groupName = line.substring(2).trim(); addMesh(groupName); } else if (/^usemtl\s/i.test(line)) { var materialName = line.substring(7).trim(); useMaterial(materialName); } else if (/^mtllib/i.test(line)) { var paths = line.substring(7).trim().split(' '); mtlPaths = mtlPaths.concat(paths); } else if ((result = vertexPattern.exec(line)) !== null) { var position = scratchCartesian; position.x = parseFloat(result[1]); position.y = parseFloat(result[2]); position.z = parseFloat(result[3]); if (defined(axisTransform)) { Matrix4.multiplyByPoint(axisTransform, position, position); } positions.push(position.x); positions.push(position.y); positions.push(position.z); } else if ((result = normalPattern.exec(line) ) !== null) { var normal = scratchCartesian; normal.x = parseFloat(result[1]); normal.y = parseFloat(result[2]); normal.z = parseFloat(result[3]); if (defined(axisTransform)) { Matrix4.multiplyByPointAsVector(axisTransform, normal, normal); } normals.push(normal.x); normals.push(normal.y); normals.push(normal.z); } else if ((result = uvPattern.exec(line)) !== null) { uvs.push(parseFloat(result[1])); uvs.push(1.0 - parseFloat(result[2])); // Flip y so 0.0 is the bottom of the image } else { var faceVertices = line.replace(faceSpacePattern, ' ').substring(1).split(' '); // get vertex data (attributes '/' separated) var faceAttributes = line.replace(faceSpaceOrSlashPattern, ' ').substring(1).split(' '); // get vertex attributes var facePositions = []; var faceUvs = []; var faceNormals = []; if (facePattern1.test(line)) { // format "f v v v ..." addFace(faceVertices, faceAttributes, undefined, undefined); } else if (facePattern2.test(line)) { // format "f v/uv v/uv v/uv ..." var i; for (i=0; i <= faceAttributes.length - 2; i += 2) { facePositions.push(faceAttributes[i]); faceUvs.push(faceAttributes[i+1]); } addFace(faceVertices, facePositions, faceUvs, undefined); } else if (facePattern3.test(line)) { // format "v/uv/n v/uv/n v/uv/n ..." for (i=0; i <= faceAttributes.length - 3; i += 3) { facePositions.push(faceAttributes[i]); faceUvs.push(faceAttributes[i+1]); faceNormals.push(faceAttributes[i+2]); } addFace(faceVertices, facePositions, faceUvs, faceNormals); } else if (facePattern4.test(line)) { // format "v//n v//n v//n ..." for (i=0; i <= faceAttributes.length - 2; i += 2) { facePositions.push(faceAttributes[i]); faceNormals.push(faceAttributes[i+1]); } addFace(faceVertices, facePositions, undefined, faceNormals); } } } // Create a default node in case there are no o/g/usemtl lines in the obj addNode(); // Parse the obj file return readLines(objPath, parseLine) .then(function() { // Unload resources positions = undefined; normals = undefined; uvs = undefined; // Load materials and images return finishLoading(nodes, mtlPaths, objPath, options); }); } function finishLoading(nodes, mtlPaths, objPath, options) { nodes = cleanNodes(nodes); if (nodes.length === 0) { return Promise.reject(new RuntimeError(objPath + ' does not have any geometry data')); } return loadMaterials(mtlPaths, objPath, options) .then(function(materials) { var imagePaths = getImagePaths(materials); return loadImages(imagePaths, objPath, options) .then(function(images) { return { nodes : nodes, materials : materials, images : images }; }); }); } function outsideDirectory(filePath, objPath) { return (path.relative(path.dirname(objPath), filePath).indexOf('..') === 0); } function loadMaterials(mtlPaths, objPath, options) { var secure = options.secure; var logger = options.logger; var objDirectory = path.dirname(objPath); var materials = {}; return Promise.map(mtlPaths, function(mtlPath) { mtlPath = path.resolve(objDirectory, mtlPath); if (secure && outsideDirectory(mtlPath, objPath)) { logger('Could not read mtl file at ' + mtlPath + ' because it is outside of the obj directory and the secure flag is true. Using default material instead.'); return; } return loadMtl(mtlPath) .then(function(materialsInMtl) { materials = Object.assign(materials, materialsInMtl); }) .catch(function() { logger('Could not read mtl file at ' + mtlPath + '. Using default material instead.'); }); }, {concurrency : 10}) .thenReturn(materials); } function loadImages(imagePaths, objPath, options) { var secure = options.secure; var logger = options.logger; var images = {}; return Promise.map(imagePaths, function(imagePath) { if (secure && outsideDirectory(imagePath, objPath)) { logger('Could not read image file at ' + imagePath + ' because it is outside of the obj directory and the secure flag is true. Material will ignore this image.'); return; } return loadImage(imagePath, options) .then(function(image) { images[imagePath] = image; }) .catch(function() { logger('Could not read image file at ' + imagePath + '. Material will ignore this image.'); }); }, {concurrency : 10}) .thenReturn(images); } function getImagePaths(materials) { var imagePaths = {}; for (var name in materials) { if (materials.hasOwnProperty(name)) { var material = materials[name]; if (defined(material.ambientTexture)) { imagePaths[material.ambientTexture] = true; } if (defined(material.diffuseTexture)) { imagePaths[material.diffuseTexture] = true; } if (defined(material.emissionTexture)) { imagePaths[material.emissionTexture] = true; } if (defined(material.specularTexture)) { imagePaths[material.specularTexture] = true; } } } return Object.keys(imagePaths); } function removeEmptyMeshes(meshes) { return meshes.filter(function(mesh) { // Remove empty primitives mesh.primitives = mesh.primitives.filter(function(primitive) { return primitive.indices.length > 0; }); // Valid meshes must have at least one primitive and contain positions return (mesh.primitives.length > 0) && (mesh.positions.length > 0); }); } function meshesHaveNames(meshes) { var meshesLength = meshes.length; for (var i = 0; i < meshesLength; ++i) { if (defined(meshes[i].name)) { return true; } } return false; } function removeEmptyNodes(nodes) { var final = []; var nodesLength = nodes.length; for (var i = 0; i < nodesLength; ++i) { var node = nodes[i]; var meshes = removeEmptyMeshes(node.meshes); if (meshes.length === 0) { continue; } node.meshes = meshes; if (!defined(node.name) && meshesHaveNames(meshes)) { // If the obj has groups (g) but not object groups (o) then convert meshes to nodes var meshesLength = meshes.length; for (var j = 0; j < meshesLength; ++j) { var mesh = meshes[j]; var convertedNode = new Node(); convertedNode.name = mesh.name; convertedNode.meshes = [mesh]; final.push(convertedNode); } } else { final.push(node); } } return final; } function setDefaultNames(items, defaultName, usedNames) { var itemsLength = items.length; for (var i = 0; i < itemsLength; ++i) { var item = items[i]; var name = defaultValue(item.name, defaultName); var occurrences = usedNames[name]; if (defined(occurrences)) { usedNames[name]++; name = name + '_' + occurrences; } else { usedNames[name] = 1; } item.name = name; } } function setDefaults(nodes) { var usedNames = {}; setDefaultNames(nodes, 'Node', usedNames); var nodesLength = nodes.length; for (var i = 0; i < nodesLength; ++i) { var node = nodes[i]; setDefaultNames(node.meshes, node.name + '-Mesh', usedNames); } } function cleanNodes(nodes) { nodes = removeEmptyNodes(nodes); setDefaults(nodes); return nodes; } function getAxisTransform(inputUpAxis, outputUpAxis) { if (inputUpAxis === 'X' && outputUpAxis === 'Y') { return Axis.X_UP_TO_Y_UP; } else if (inputUpAxis === 'X' && outputUpAxis === 'Z') { return Axis.X_UP_TO_Z_UP; } else if (inputUpAxis === 'Y' && outputUpAxis === 'X') { return Axis.Y_UP_TO_X_UP; } else if (inputUpAxis === 'Y' && outputUpAxis === 'Z') { return Axis.Y_UP_TO_Z_UP; } else if (inputUpAxis === 'Z' && outputUpAxis === 'X') { return Axis.Z_UP_TO_X_UP; } else if (inputUpAxis === 'Z' && outputUpAxis === 'Y') { return Axis.Z_UP_TO_Y_UP; } }