circuitpython/ports/raspberrypi/common-hal/busio/UART.c

342 lines
11 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 microDev
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/busio/UART.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "supervisor/shared/tick.h"
#include "shared/runtime/interrupt_char.h"
#include "common-hal/microcontroller/Pin.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "src/rp2_common/hardware_irq/include/hardware/irq.h"
#include "src/rp2_common/hardware_gpio/include/hardware/gpio.h"
#define NO_PIN 0xff
#define UART_INST(uart) (((uart) ? uart1 : uart0))
typedef enum {
STATUS_FREE = 0,
STATUS_BUSY,
STATUS_NEVER_RESET
} uart_status_t;
static uart_status_t uart_status[NUM_UARTS];
void reset_uart(void) {
for (uint8_t num = 0; num < NUM_UARTS; num++) {
if (uart_status[num] == STATUS_BUSY) {
uart_status[num] = STATUS_FREE;
uart_deinit(UART_INST(num));
}
}
}
void never_reset_uart(uint8_t num) {
uart_status[num] = STATUS_NEVER_RESET;
}
static uint8_t pin_init(const uint8_t uart, const mcu_pin_obj_t *pin, const uint8_t pin_type) {
if (pin == NULL) {
return NO_PIN;
}
if (!(((pin->number % 4) == pin_type) && ((((pin->number + 4) / 8) % NUM_UARTS) == uart))) {
raise_ValueError_invalid_pins();
}
claim_pin(pin);
gpio_set_function(pin->number, GPIO_FUNC_UART);
return pin->number;
}
static busio_uart_obj_t *active_uarts[NUM_UARTS];
static void _copy_into_ringbuf(ringbuf_t *r, uart_inst_t *uart) {
while (uart_is_readable(uart) && ringbuf_num_empty(r) > 0) {
ringbuf_put(r, (uint8_t)uart_get_hw(uart)->dr);
}
}
static void shared_callback(busio_uart_obj_t *self) {
_copy_into_ringbuf(&self->ringbuf, self->uart);
// We always clear the interrupt so it doesn't continue to fire because we
// may not have read everything available.
uart_get_hw(self->uart)->icr = UART_UARTICR_RXIC_BITS | UART_UARTICR_RTIC_BITS;
}
static void uart0_callback(void) {
shared_callback(active_uarts[0]);
}
static void uart1_callback(void) {
shared_callback(active_uarts[1]);
}
void common_hal_busio_uart_construct(busio_uart_obj_t *self,
const mcu_pin_obj_t *tx, const mcu_pin_obj_t *rx,
const mcu_pin_obj_t *rts, const mcu_pin_obj_t *cts,
const mcu_pin_obj_t *rs485_dir, bool rs485_invert,
uint32_t baudrate, uint8_t bits, busio_uart_parity_t parity, uint8_t stop,
mp_float_t timeout, uint16_t receiver_buffer_size, byte *receiver_buffer,
bool sigint_enabled) {
mp_arg_validate_int_max(bits, 8, MP_QSTR_bits);
mp_arg_validate_int_min(receiver_buffer_size, 1, MP_QSTR_receiver_buffer_size);
uint8_t uart_id = ((((tx != NULL) ? tx->number : rx->number) + 4) / 8) % NUM_UARTS;
if (uart_status[uart_id] != STATUS_FREE) {
mp_raise_RuntimeError(translate("All UART peripherals are in use"));
}
// These may raise exceptions if pins are already in use.
self->tx_pin = pin_init(uart_id, tx, 0);
self->rx_pin = pin_init(uart_id, rx, 1);
self->cts_pin = pin_init(uart_id, cts, 2);
self->rts_pin = pin_init(uart_id, rts, 3);
if (rs485_dir != NULL) {
uint8_t pin = rs485_dir->number;
self->rs485_dir_pin = pin;
self->rs485_invert = rs485_invert;
gpio_init(pin);
claim_pin(rs485_dir);
gpio_disable_pulls(pin);
// Turn on "strong" pin driving (more current available).
hw_write_masked(&padsbank0_hw->io[pin],
PADS_BANK0_GPIO0_DRIVE_VALUE_12MA << PADS_BANK0_GPIO0_DRIVE_LSB,
PADS_BANK0_GPIO0_DRIVE_BITS);
gpio_put(self->rs485_dir_pin, rs485_invert);
gpio_set_dir(self->rs485_dir_pin, GPIO_OUT);
} else {
self->rs485_dir_pin = NO_PIN;
}
uart_status[uart_id] = STATUS_BUSY;
self->uart = UART_INST(uart_id);
self->uart_id = uart_id;
self->baudrate = baudrate;
self->timeout_ms = timeout * 1000;
uart_init(self->uart, self->baudrate);
uart_set_fifo_enabled(self->uart, true);
uart_set_format(self->uart, bits, stop, parity);
uart_set_hw_flow(self->uart, (cts != NULL), (rts != NULL));
if (rx != NULL) {
// Use the provided buffer when given.
if (receiver_buffer != NULL) {
ringbuf_init(&self->ringbuf, receiver_buffer, receiver_buffer_size);
} else {
// Initially allocate the UART's buffer in the long-lived part of the
// heap. UARTs are generally long-lived objects, but the "make long-
// lived" machinery is incapable of moving internal pointers like
// self->buffer, so do it manually. (However, as long as internal
// pointers like this are NOT moved, allocating the buffer
// in the long-lived pool is not strictly necessary)
if (!ringbuf_alloc(&self->ringbuf, receiver_buffer_size, true)) {
uart_deinit(self->uart);
m_malloc_fail(receiver_buffer_size);
}
}
}
active_uarts[uart_id] = self;
if (uart_id == 1) {
self->uart_irq_id = UART1_IRQ;
irq_set_exclusive_handler(self->uart_irq_id, uart1_callback);
} else {
self->uart_irq_id = UART0_IRQ;
irq_set_exclusive_handler(self->uart_irq_id, uart0_callback);
}
irq_set_enabled(self->uart_irq_id, true);
uart_set_irq_enables(self->uart, true /* rx has data */, false /* tx needs data */);
}
bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) {
return self->tx_pin == NO_PIN && self->rx_pin == NO_PIN;
}
void common_hal_busio_uart_deinit(busio_uart_obj_t *self) {
if (common_hal_busio_uart_deinited(self)) {
return;
}
uart_deinit(self->uart);
ringbuf_deinit(&self->ringbuf);
active_uarts[self->uart_id] = NULL;
uart_status[self->uart_id] = STATUS_FREE;
reset_pin_number(self->tx_pin);
reset_pin_number(self->rx_pin);
reset_pin_number(self->cts_pin);
reset_pin_number(self->rts_pin);
reset_pin_number(self->rs485_dir_pin);
self->tx_pin = NO_PIN;
self->rx_pin = NO_PIN;
self->cts_pin = NO_PIN;
self->rts_pin = NO_PIN;
self->rs485_dir_pin = NO_PIN;
}
// Write characters.
size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) {
if (self->tx_pin == NO_PIN) {
mp_raise_ValueError(translate("No TX pin"));
}
if (self->rs485_dir_pin != NO_PIN) {
uart_tx_wait_blocking(self->uart);
gpio_put(self->rs485_dir_pin, !self->rs485_invert);
}
size_t left_to_write = len;
while (left_to_write > 0) {
while (uart_is_writable(self->uart) && left_to_write > 0) {
// Write and advance.
uart_get_hw(self->uart)->dr = *data++;
// Decrease how many chars left to write.
left_to_write--;
}
RUN_BACKGROUND_TASKS;
}
if (self->rs485_dir_pin != NO_PIN) {
uart_tx_wait_blocking(self->uart);
gpio_put(self->rs485_dir_pin, self->rs485_invert);
}
return len;
}
// Read characters.
size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) {
if (self->rx_pin == NO_PIN) {
mp_raise_ValueError(translate("No RX pin"));
}
if (len == 0) {
// Nothing to read.
return 0;
}
// Prevent conflict with uart irq.
irq_set_enabled(self->uart_irq_id, false);
// Copy as much received data as available, up to len bytes.
size_t total_read = ringbuf_get_n(&self->ringbuf, data, len);
// Check if we still need to read more data.
if (len > total_read) {
len -= total_read;
uint64_t start_ticks = supervisor_ticks_ms64();
// Busy-wait until timeout or until we've read enough chars.
while (len > 0 && (supervisor_ticks_ms64() - start_ticks < self->timeout_ms)) {
if (uart_is_readable(self->uart)) {
// Read and advance.
data[total_read] = uart_get_hw(self->uart)->dr;
// Adjust the counters.
len--;
total_read++;
// Reset the timeout on every character read.
start_ticks = supervisor_ticks_ms64();
}
RUN_BACKGROUND_TASKS;
// Allow user to break out of a timeout with a KeyboardInterrupt.
if (mp_hal_is_interrupted()) {
break;
}
}
}
// Now that we've emptied the ringbuf some, fill it up with anything in the
// FIFO. This ensures that we'll empty the FIFO as much as possible and
// reset the interrupt when we catch up.
_copy_into_ringbuf(&self->ringbuf, self->uart);
// Re-enable irq.
irq_set_enabled(self->uart_irq_id, true);
if (total_read == 0) {
*errcode = EAGAIN;
return MP_STREAM_ERROR;
}
return total_read;
}
uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) {
return self->baudrate;
}
void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) {
self->baudrate = baudrate;
uart_set_baudrate(self->uart, baudrate);
}
mp_float_t common_hal_busio_uart_get_timeout(busio_uart_obj_t *self) {
return (mp_float_t)(self->timeout_ms / 1000.0f);
}
void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeout) {
self->timeout_ms = timeout * 1000;
}
uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) {
// Prevent conflict with uart irq.
irq_set_enabled(self->uart_irq_id, false);
// The UART only interrupts after a threshold so make sure to copy anything
// out of its FIFO before measuring how many bytes we've received.
_copy_into_ringbuf(&self->ringbuf, self->uart);
irq_set_enabled(self->uart_irq_id, true);
return ringbuf_num_filled(&self->ringbuf);
}
void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) {
// Prevent conflict with uart irq.
irq_set_enabled(self->uart_irq_id, false);
ringbuf_clear(&self->ringbuf);
// Throw away the FIFO contents too.
while (uart_is_readable(self->uart)) {
(void)uart_get_hw(self->uart)->dr;
}
irq_set_enabled(self->uart_irq_id, true);
}
bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) {
if (self->tx_pin == NO_PIN) {
return false;
}
return uart_is_writable(self->uart);
}