circuitpython/ports/esp8266/modmachine.c
Damien George 8f20cdc353 all: Rename absolute time-based functions to include "epoch".
For time-based functions that work with absolute time there is the need for
an Epoch, to set the zero-point at which the absolute time starts counting.
Such functions include time.time() and filesystem stat return values.  And
different ports may use a different Epoch.

To make it clearer what functions use the Epoch (whatever it may be), and
make the ports more consistent with their use of the Epoch, this commit
renames all Epoch related functions to include the word "epoch" in their
name (and remove references to "2000").

Along with this rename, the following things have changed:

- mp_hal_time_ns() is now specified to return the number of nanoseconds
  since the Epoch, rather than since 1970 (but since this is an internal
  function it doesn't change anything for the user).

- littlefs timestamps on the esp8266 have been fixed (they were previously
  off by 30 years in nanoseconds).

Otherwise, there is no functional change made by this commit.

Signed-off-by: Damien George <damien@micropython.org>
2020-09-18 17:20:34 +10:00

449 lines
16 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2015 Damien P. George
* Copyright (c) 2016 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "lib/utils/pyexec.h"
// This needs to be set before we include the RTOS headers
#define USE_US_TIMER 1
#include "extmod/machine_mem.h"
#include "extmod/machine_signal.h"
#include "extmod/machine_pulse.h"
#include "extmod/machine_i2c.h"
#include "modmachine.h"
#include "xtirq.h"
#include "os_type.h"
#include "osapi.h"
#include "etshal.h"
#include "ets_alt_task.h"
#include "user_interface.h"
#if MICROPY_PY_MACHINE
// #define MACHINE_WAKE_IDLE (0x01)
// #define MACHINE_WAKE_SLEEP (0x02)
#define MACHINE_WAKE_DEEPSLEEP (0x04)
extern const mp_obj_type_t esp_wdt_type;
STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
// get
return mp_obj_new_int(system_get_cpu_freq() * 1000000);
} else {
// set
mp_int_t freq = mp_obj_get_int(args[0]) / 1000000;
if (freq != 80 && freq != 160) {
mp_raise_ValueError(MP_ERROR_TEXT("frequency can only be either 80Mhz or 160MHz"));
}
system_update_cpu_freq(freq);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_freq_obj, 0, 1, machine_freq);
STATIC mp_obj_t machine_reset(void) {
system_restart();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset);
STATIC mp_obj_t machine_soft_reset(void) {
pyexec_system_exit = PYEXEC_FORCED_EXIT;
mp_raise_type(&mp_type_SystemExit);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_soft_reset_obj, machine_soft_reset);
STATIC mp_obj_t machine_reset_cause(void) {
return MP_OBJ_NEW_SMALL_INT(system_get_rst_info()->reason);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause);
STATIC mp_obj_t machine_unique_id(void) {
uint32_t id = system_get_chip_id();
return mp_obj_new_bytes((byte *)&id, sizeof(id));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_unique_id_obj, machine_unique_id);
STATIC mp_obj_t machine_idle(void) {
uint32_t t = mp_hal_ticks_cpu();
asm ("waiti 0");
t = mp_hal_ticks_cpu() - t;
ets_event_poll(); // handle any events after possibly a long wait (eg feed WDT)
return MP_OBJ_NEW_SMALL_INT(t);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_idle_obj, machine_idle);
STATIC mp_obj_t machine_lightsleep(size_t n_args, const mp_obj_t *args) {
uint32_t max_us = 0xffffffff;
if (n_args == 1) {
mp_int_t max_ms = mp_obj_get_int(args[0]);
if (max_ms < 0) {
max_ms = 0;
}
max_us = max_ms * 1000;
}
uint32_t wifi_mode = wifi_get_opmode();
uint32_t start = system_get_time();
while (system_get_time() - start <= max_us) {
ets_event_poll();
if (wifi_mode == NULL_MODE) {
// Can only idle if the wifi is off
asm ("waiti 0");
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_lightsleep_obj, 0, 1, machine_lightsleep);
STATIC mp_obj_t machine_deepsleep(size_t n_args, const mp_obj_t *args) {
// default to sleep forever
uint32_t sleep_us = 0;
// see if RTC.ALARM0 should wake the device
if (pyb_rtc_alarm0_wake & MACHINE_WAKE_DEEPSLEEP) {
uint64_t t = pyb_rtc_get_us_since_epoch();
if (pyb_rtc_alarm0_expiry <= t) {
sleep_us = 1; // alarm already expired so wake immediately
} else {
uint64_t delta = pyb_rtc_alarm0_expiry - t;
if (delta <= 0xffffffff) {
// sleep for the desired time
sleep_us = delta;
} else {
// overflow, just set to maximum sleep time
sleep_us = 0xffffffff;
}
}
}
// if an argument is given then that's the maximum time to sleep for
if (n_args == 1) {
mp_int_t max_ms = mp_obj_get_int(args[0]);
if (max_ms <= 0) {
max_ms = 1;
}
uint32_t max_us = max_ms * 1000;
if (sleep_us == 0 || max_us < sleep_us) {
sleep_us = max_us;
}
}
// prepare for RTC reset at wake up
rtc_prepare_deepsleep(sleep_us);
// put the device in a deep-sleep state
system_deep_sleep_set_option(0); // default power down mode; TODO check this
system_deep_sleep(sleep_us);
for (;;) {
// we must not return
ets_loop_iter();
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_deepsleep_obj, 0, 1, machine_deepsleep);
// These values are from the datasheet
#define ESP_TIMER_US_MIN (100)
#define ESP_TIMER_US_MAX (0xfffffff)
#define ESP_TIMER_MS_MAX (0x689d0)
typedef struct _esp_timer_obj_t {
mp_obj_base_t base;
os_timer_t timer;
uint32_t remain_ms; // if non-zero, remaining time to handle large periods
uint32_t period_ms; // if non-zero, periodic timer with a large period
mp_obj_t callback;
} esp_timer_obj_t;
STATIC void esp_timer_arm_ms(esp_timer_obj_t *self, uint32_t ms, bool repeat) {
if (ms <= ESP_TIMER_MS_MAX) {
self->remain_ms = 0;
self->period_ms = 0;
} else {
self->remain_ms = ms - ESP_TIMER_MS_MAX;
if (repeat) {
repeat = false;
self->period_ms = ms;
} else {
self->period_ms = 0;
}
ms = ESP_TIMER_MS_MAX;
}
os_timer_arm(&self->timer, ms, repeat);
}
STATIC void esp_timer_arm_us(esp_timer_obj_t *self, uint32_t us, bool repeat) {
if (us < ESP_TIMER_US_MIN) {
us = ESP_TIMER_US_MIN;
}
if (us <= ESP_TIMER_US_MAX) {
self->remain_ms = 0;
self->period_ms = 0;
os_timer_arm_us(&self->timer, us, repeat);
} else {
esp_timer_arm_ms(self, us / 1000, repeat);
}
}
const mp_obj_type_t esp_timer_type;
STATIC void esp_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
esp_timer_obj_t *self = self_in;
mp_printf(print, "Timer(%p)", &self->timer);
}
STATIC mp_obj_t esp_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, 1, false);
esp_timer_obj_t *tim = m_new_obj(esp_timer_obj_t);
tim->base.type = &esp_timer_type;
return tim;
}
STATIC void esp_timer_cb(void *arg) {
esp_timer_obj_t *self = arg;
if (self->remain_ms != 0) {
// Handle periods larger than the maximum system period
uint32_t next_period_ms = self->remain_ms;
if (next_period_ms > ESP_TIMER_MS_MAX) {
next_period_ms = ESP_TIMER_MS_MAX;
}
self->remain_ms -= next_period_ms;
os_timer_arm(&self->timer, next_period_ms, false);
} else {
mp_sched_schedule(self->callback, self);
if (self->period_ms != 0) {
// A periodic timer with a larger period: reschedule it
esp_timer_arm_ms(self, self->period_ms, true);
}
}
}
STATIC mp_obj_t esp_timer_init_helper(esp_timer_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {
ARG_mode,
ARG_callback,
ARG_period,
ARG_tick_hz,
ARG_freq,
};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_tick_hz, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
#if MICROPY_PY_BUILTINS_FLOAT
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
#else
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
#endif
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
self->callback = args[ARG_callback].u_obj;
// Be sure to disarm timer before making any changes
os_timer_disarm(&self->timer);
os_timer_setfn(&self->timer, esp_timer_cb, self);
#if MICROPY_PY_BUILTINS_FLOAT
if (args[ARG_freq].u_obj != mp_const_none) {
mp_float_t freq = mp_obj_get_float(args[ARG_freq].u_obj);
if (freq < 0.001) {
esp_timer_arm_ms(self, (mp_int_t)(1000 / freq), args[ARG_mode].u_int);
} else {
esp_timer_arm_us(self, (mp_int_t)(1000000 / freq), args[ARG_mode].u_int);
}
}
#else
if (args[ARG_freq].u_int != 0xffffffff) {
esp_timer_arm_us(self, 1000000 / args[ARG_freq].u_int, args[ARG_mode].u_int);
}
#endif
else {
mp_int_t period = args[ARG_period].u_int;
mp_int_t hz = args[ARG_tick_hz].u_int;
if (hz == 1000) {
esp_timer_arm_ms(self, period, args[ARG_mode].u_int);
} else if (hz == 1000000) {
esp_timer_arm_us(self, period, args[ARG_mode].u_int);
} else {
// Use a long long to ensure that we don't either overflow or loose accuracy
uint64_t period_us = (((uint64_t)period) * 1000000) / hz;
if (period_us < 0x80000000ull) {
esp_timer_arm_us(self, (mp_int_t)period_us, args[ARG_mode].u_int);
} else {
esp_timer_arm_ms(self, (mp_int_t)(period_us / 1000), args[ARG_mode].u_int);
}
}
}
return mp_const_none;
}
STATIC mp_obj_t esp_timer_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return esp_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(esp_timer_init_obj, 1, esp_timer_init);
STATIC mp_obj_t esp_timer_deinit(mp_obj_t self_in) {
esp_timer_obj_t *self = self_in;
os_timer_disarm(&self->timer);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp_timer_deinit_obj, esp_timer_deinit);
STATIC const mp_rom_map_elem_t esp_timer_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&esp_timer_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&esp_timer_init_obj) },
// { MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&esp_timer_callback_obj) },
{ MP_ROM_QSTR(MP_QSTR_ONE_SHOT), MP_ROM_INT(false) },
{ MP_ROM_QSTR(MP_QSTR_PERIODIC), MP_ROM_INT(true) },
};
STATIC MP_DEFINE_CONST_DICT(esp_timer_locals_dict, esp_timer_locals_dict_table);
const mp_obj_type_t esp_timer_type = {
{ &mp_type_type },
.name = MP_QSTR_Timer,
.print = esp_timer_print,
.make_new = esp_timer_make_new,
.locals_dict = (mp_obj_dict_t *)&esp_timer_locals_dict,
};
// this bit is unused in the Xtensa PS register
#define ETS_LOOP_ITER_BIT (12)
STATIC mp_obj_t machine_disable_irq(void) {
uint32_t state = disable_irq();
state = (state & ~(1 << ETS_LOOP_ITER_BIT)) | (ets_loop_iter_disable << ETS_LOOP_ITER_BIT);
ets_loop_iter_disable = 1;
return mp_obj_new_int(state);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_disable_irq_obj, machine_disable_irq);
STATIC mp_obj_t machine_enable_irq(mp_obj_t state_in) {
uint32_t state = mp_obj_get_int(state_in);
ets_loop_iter_disable = (state >> ETS_LOOP_ITER_BIT) & 1;
enable_irq(state & ~(1 << ETS_LOOP_ITER_BIT));
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_enable_irq_obj, machine_enable_irq);
// Custom version of this function that feeds system WDT if necessary
mp_uint_t machine_time_pulse_us(mp_hal_pin_obj_t pin, int pulse_level, mp_uint_t timeout_us) {
int nchanges = 2;
uint32_t start = system_get_time(); // in microseconds
for (;;) {
uint32_t dt = system_get_time() - start;
// Check if pin changed to wanted value
if (mp_hal_pin_read(pin) == pulse_level) {
if (--nchanges == 0) {
return dt;
}
pulse_level = 1 - pulse_level;
start = system_get_time();
continue;
}
// Check for timeout
if (dt >= timeout_us) {
return (mp_uint_t)-nchanges;
}
// Only feed WDT every now and then, to make sure edge timing is accurate
if ((dt & 0xffff) == 0xffff && !ets_loop_dont_feed_sw_wdt) {
system_soft_wdt_feed();
}
}
}
STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) },
{ MP_ROM_QSTR(MP_QSTR_mem8), MP_ROM_PTR(&machine_mem8_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem16), MP_ROM_PTR(&machine_mem16_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem32), MP_ROM_PTR(&machine_mem32_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_freq_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&machine_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_soft_reset), MP_ROM_PTR(&machine_soft_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset_cause), MP_ROM_PTR(&machine_reset_cause_obj) },
{ MP_ROM_QSTR(MP_QSTR_unique_id), MP_ROM_PTR(&machine_unique_id_obj) },
{ MP_ROM_QSTR(MP_QSTR_idle), MP_ROM_PTR(&machine_idle_obj) },
{ MP_ROM_QSTR(MP_QSTR_sleep), MP_ROM_PTR(&machine_lightsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_lightsleep), MP_ROM_PTR(&machine_lightsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_deepsleep), MP_ROM_PTR(&machine_deepsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&machine_disable_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_enable_irq), MP_ROM_PTR(&machine_enable_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_time_pulse_us), MP_ROM_PTR(&machine_time_pulse_us_obj) },
{ MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&pyb_rtc_type) },
{ MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&esp_timer_type) },
{ MP_ROM_QSTR(MP_QSTR_WDT), MP_ROM_PTR(&esp_wdt_type) },
{ MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pyb_pin_type) },
{ MP_ROM_QSTR(MP_QSTR_Signal), MP_ROM_PTR(&machine_signal_type) },
{ MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_PTR(&pyb_pwm_type) },
{ MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&machine_adc_type) },
{ MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&pyb_uart_type) },
#if MICROPY_PY_MACHINE_I2C
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_i2c_type) },
#endif
#if MICROPY_PY_MACHINE_SPI
{ MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_hspi_type) },
#endif
// wake abilities
{ MP_ROM_QSTR(MP_QSTR_DEEPSLEEP), MP_ROM_INT(MACHINE_WAKE_DEEPSLEEP) },
// reset causes
{ MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(REASON_DEFAULT_RST) },
{ MP_ROM_QSTR(MP_QSTR_HARD_RESET), MP_ROM_INT(REASON_EXT_SYS_RST) },
{ MP_ROM_QSTR(MP_QSTR_DEEPSLEEP_RESET), MP_ROM_INT(REASON_DEEP_SLEEP_AWAKE) },
{ MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(REASON_WDT_RST) },
{ MP_ROM_QSTR(MP_QSTR_SOFT_RESET), MP_ROM_INT(REASON_SOFT_RESTART) },
};
STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table);
const mp_obj_module_t mp_module_machine = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&machine_module_globals,
};
#endif // MICROPY_PY_MACHINE