df6567e634
Pretty much everyone needs to include map.h, since it's such an integral part of the Micro Python object implementation. Thus, the definitions are now in obj.h instead. map.h is removed.
438 lines
15 KiB
C
438 lines
15 KiB
C
#include <stdbool.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "nlr.h"
|
|
#include "misc.h"
|
|
#include "mpconfig.h"
|
|
#include "qstr.h"
|
|
#include "obj.h"
|
|
#include "objtuple.h"
|
|
#include "runtime0.h"
|
|
#include "runtime.h"
|
|
#include "bc.h"
|
|
|
|
#if 0 // print debugging info
|
|
#define DEBUG_PRINT (1)
|
|
#else // don't print debugging info
|
|
#define DEBUG_printf(...) (void)0
|
|
#endif
|
|
|
|
/******************************************************************************/
|
|
/* native functions */
|
|
|
|
// mp_obj_fun_native_t defined in obj.h
|
|
|
|
STATIC void check_nargs(mp_obj_fun_native_t *self, int n_args, int n_kw) {
|
|
mp_check_nargs(n_args, self->n_args_min, self->n_args_max, n_kw, self->is_kw);
|
|
}
|
|
|
|
void mp_check_nargs(int n_args, machine_uint_t n_args_min, machine_uint_t n_args_max, int n_kw, bool is_kw) {
|
|
if (n_kw && !is_kw) {
|
|
nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError,
|
|
"function does not take keyword arguments"));
|
|
}
|
|
|
|
if (n_args_min == n_args_max) {
|
|
if (n_args != n_args_min) {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"function takes %d positional arguments but %d were given",
|
|
n_args_min, n_args));
|
|
}
|
|
} else {
|
|
if (n_args < n_args_min) {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"<fun name>() missing %d required positional arguments: <list of names of params>",
|
|
n_args_min - n_args));
|
|
} else if (n_args > n_args_max) {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"<fun name> expected at most %d arguments, got %d",
|
|
n_args_max, n_args));
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC mp_obj_t fun_native_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
|
|
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_native));
|
|
mp_obj_fun_native_t *self = self_in;
|
|
|
|
// check number of arguments
|
|
check_nargs(self, n_args, n_kw);
|
|
|
|
if (self->is_kw) {
|
|
// function allows keywords
|
|
|
|
// we create a map directly from the given args array
|
|
mp_map_t kw_args;
|
|
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
|
|
|
|
return ((mp_fun_kw_t)self->fun)(n_args, args, &kw_args);
|
|
|
|
} else if (self->n_args_min <= 3 && self->n_args_min == self->n_args_max) {
|
|
// function requires a fixed number of arguments
|
|
|
|
// dispatch function call
|
|
switch (self->n_args_min) {
|
|
case 0:
|
|
return ((mp_fun_0_t)self->fun)();
|
|
|
|
case 1:
|
|
return ((mp_fun_1_t)self->fun)(args[0]);
|
|
|
|
case 2:
|
|
return ((mp_fun_2_t)self->fun)(args[0], args[1]);
|
|
|
|
case 3:
|
|
return ((mp_fun_3_t)self->fun)(args[0], args[1], args[2]);
|
|
|
|
default:
|
|
assert(0);
|
|
return mp_const_none;
|
|
}
|
|
|
|
} else {
|
|
// function takes a variable number of arguments, but no keywords
|
|
|
|
return ((mp_fun_var_t)self->fun)(n_args, args);
|
|
}
|
|
}
|
|
|
|
const mp_obj_type_t mp_type_fun_native = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = fun_native_call,
|
|
};
|
|
|
|
// fun must have the correct signature for n_args fixed arguments
|
|
mp_obj_t mp_make_function_n(int n_args, void *fun) {
|
|
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
|
|
o->base.type = &mp_type_fun_native;
|
|
o->is_kw = false;
|
|
o->n_args_min = n_args;
|
|
o->n_args_max = n_args;
|
|
o->fun = fun;
|
|
return o;
|
|
}
|
|
|
|
mp_obj_t mp_make_function_var(int n_args_min, mp_fun_var_t fun) {
|
|
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
|
|
o->base.type = &mp_type_fun_native;
|
|
o->is_kw = false;
|
|
o->n_args_min = n_args_min;
|
|
o->n_args_max = MP_OBJ_FUN_ARGS_MAX;
|
|
o->fun = fun;
|
|
return o;
|
|
}
|
|
|
|
// min and max are inclusive
|
|
mp_obj_t mp_make_function_var_between(int n_args_min, int n_args_max, mp_fun_var_t fun) {
|
|
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
|
|
o->base.type = &mp_type_fun_native;
|
|
o->is_kw = false;
|
|
o->n_args_min = n_args_min;
|
|
o->n_args_max = n_args_max;
|
|
o->fun = fun;
|
|
return o;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* byte code functions */
|
|
|
|
typedef struct _mp_obj_fun_bc_t {
|
|
mp_obj_base_t base;
|
|
mp_map_t *globals; // the context within which this function was defined
|
|
machine_uint_t n_args : 15; // number of arguments this function takes
|
|
machine_uint_t n_def_args : 15; // number of default arguments
|
|
machine_uint_t takes_var_args : 1; // set if this function takes variable args
|
|
machine_uint_t takes_kw_args : 1; // set if this function takes keyword args
|
|
const byte *bytecode; // bytecode for the function
|
|
qstr *args; // argument names (needed to resolve positional args passed as keywords)
|
|
mp_obj_t extra_args[]; // values of default args (if any), plus a slot at the end for var args and/or kw args (if it takes them)
|
|
} mp_obj_fun_bc_t;
|
|
|
|
void dump_args(const mp_obj_t *a, int sz) {
|
|
#if DEBUG_PRINT
|
|
DEBUG_printf("%p: ", a);
|
|
for (int i = 0; i < sz; i++) {
|
|
DEBUG_printf("%p ", a[i]);
|
|
}
|
|
DEBUG_printf("\n");
|
|
#endif
|
|
}
|
|
|
|
STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
|
|
DEBUG_printf("Input: ");
|
|
dump_args(args, n_args);
|
|
mp_obj_fun_bc_t *self = self_in;
|
|
|
|
const mp_obj_t *kwargs = args + n_args;
|
|
mp_obj_t *extra_args = self->extra_args + self->n_def_args;
|
|
uint n_extra_args = 0;
|
|
|
|
|
|
// check positional arguments
|
|
|
|
if (n_args > self->n_args) {
|
|
// given more than enough arguments
|
|
if (!self->takes_var_args) {
|
|
goto arg_error;
|
|
}
|
|
// put extra arguments in varargs tuple
|
|
*extra_args = mp_obj_new_tuple(n_args - self->n_args, args + self->n_args);
|
|
n_extra_args = 1;
|
|
n_args = self->n_args;
|
|
} else {
|
|
if (self->takes_var_args) {
|
|
DEBUG_printf("passing empty tuple as *args\n");
|
|
*extra_args = mp_const_empty_tuple;
|
|
n_extra_args = 1;
|
|
}
|
|
// Apply processing and check below only if we don't have kwargs,
|
|
// otherwise, kw handling code below has own extensive checks.
|
|
if (n_kw == 0) {
|
|
if (n_args >= self->n_args - self->n_def_args) {
|
|
// given enough arguments, but may need to use some default arguments
|
|
extra_args -= self->n_args - n_args;
|
|
n_extra_args += self->n_args - n_args;
|
|
} else {
|
|
goto arg_error;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check keyword arguments
|
|
|
|
if (n_kw != 0) {
|
|
// We cannot use dynamically-sized array here, because GCC indeed
|
|
// deallocates it on leaving defining scope (unlike most static stack allocs).
|
|
// So, we have 2 choices: allocate it unconditionally at the top of function
|
|
// (wastes stack), or use alloca which is guaranteed to dealloc on func exit.
|
|
//mp_obj_t flat_args[self->n_args];
|
|
mp_obj_t *flat_args = alloca(self->n_args * sizeof(mp_obj_t));
|
|
for (int i = self->n_args - 1; i >= 0; i--) {
|
|
flat_args[i] = MP_OBJ_NULL;
|
|
}
|
|
memcpy(flat_args, args, sizeof(*args) * n_args);
|
|
DEBUG_printf("Initial args: ");
|
|
dump_args(flat_args, self->n_args);
|
|
|
|
mp_obj_t dict = MP_OBJ_NULL;
|
|
if (self->takes_kw_args) {
|
|
dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0?
|
|
}
|
|
for (uint i = 0; i < n_kw; i++) {
|
|
qstr arg_name = MP_OBJ_QSTR_VALUE(kwargs[2 * i]);
|
|
for (uint j = 0; j < self->n_args; j++) {
|
|
if (arg_name == self->args[j]) {
|
|
if (flat_args[j] != MP_OBJ_NULL) {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"function got multiple values for argument '%s'", qstr_str(arg_name)));
|
|
}
|
|
flat_args[j] = kwargs[2 * i + 1];
|
|
goto continue2;
|
|
}
|
|
}
|
|
// Didn't find name match with positional args
|
|
if (!self->takes_kw_args) {
|
|
nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
|
|
}
|
|
mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]);
|
|
continue2:;
|
|
}
|
|
DEBUG_printf("Args with kws flattened: ");
|
|
dump_args(flat_args, self->n_args);
|
|
|
|
// Now fill in defaults
|
|
mp_obj_t *d = &flat_args[self->n_args - 1];
|
|
mp_obj_t *s = &self->extra_args[self->n_def_args - 1];
|
|
for (int i = self->n_def_args; i > 0; i--) {
|
|
if (*d == MP_OBJ_NULL) {
|
|
*d-- = *s--;
|
|
}
|
|
}
|
|
DEBUG_printf("Args after filling defaults: ");
|
|
dump_args(flat_args, self->n_args);
|
|
|
|
// Now check that all mandatory args specified
|
|
while (d >= flat_args) {
|
|
if (*d-- == MP_OBJ_NULL) {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"function missing required positional argument #%d", d - flat_args));
|
|
}
|
|
}
|
|
|
|
args = flat_args;
|
|
n_args = self->n_args;
|
|
|
|
if (self->takes_kw_args) {
|
|
extra_args[n_extra_args] = dict;
|
|
n_extra_args += 1;
|
|
}
|
|
} else {
|
|
// no keyword arguments given
|
|
if (self->takes_kw_args) {
|
|
extra_args[n_extra_args] = mp_obj_new_dict(0);
|
|
n_extra_args += 1;
|
|
}
|
|
}
|
|
|
|
mp_map_t *old_globals = mp_globals_get();
|
|
mp_globals_set(self->globals);
|
|
mp_obj_t result;
|
|
DEBUG_printf("Calling: args=%p, n_args=%d, extra_args=%p, n_extra_args=%d\n", args, n_args, extra_args, n_extra_args);
|
|
dump_args(args, n_args);
|
|
dump_args(extra_args, n_extra_args);
|
|
mp_vm_return_kind_t vm_return_kind = mp_execute_byte_code(self->bytecode, args, n_args, extra_args, n_extra_args, &result);
|
|
mp_globals_set(old_globals);
|
|
|
|
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
|
|
return result;
|
|
} else { // MP_VM_RETURN_EXCEPTION
|
|
nlr_jump(result);
|
|
}
|
|
|
|
arg_error:
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", self->n_args, n_args));
|
|
}
|
|
|
|
const mp_obj_type_t mp_type_fun_bc = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = fun_bc_call,
|
|
};
|
|
|
|
mp_obj_t mp_obj_new_fun_bc(uint scope_flags, qstr *args, uint n_args, mp_obj_t def_args_in, const byte *code) {
|
|
uint n_def_args = 0;
|
|
uint n_extra_args = 0;
|
|
mp_obj_tuple_t *def_args = def_args_in;
|
|
if (def_args != MP_OBJ_NULL) {
|
|
n_def_args = def_args->len;
|
|
n_extra_args = def_args->len;
|
|
}
|
|
if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) {
|
|
n_extra_args += 1;
|
|
}
|
|
if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
|
|
n_extra_args += 1;
|
|
}
|
|
mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args);
|
|
o->base.type = &mp_type_fun_bc;
|
|
o->globals = mp_globals_get();
|
|
o->args = args;
|
|
o->n_args = n_args;
|
|
o->n_def_args = n_def_args;
|
|
o->takes_var_args = (scope_flags & MP_SCOPE_FLAG_VARARGS) != 0;
|
|
o->takes_kw_args = (scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0;
|
|
o->bytecode = code;
|
|
if (def_args != MP_OBJ_NULL) {
|
|
memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t));
|
|
}
|
|
return o;
|
|
}
|
|
|
|
void mp_obj_fun_bc_get(mp_obj_t self_in, int *n_args, const byte **code) {
|
|
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_bc));
|
|
mp_obj_fun_bc_t *self = self_in;
|
|
*n_args = self->n_args;
|
|
*code = self->bytecode;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* inline assembler functions */
|
|
|
|
typedef struct _mp_obj_fun_asm_t {
|
|
mp_obj_base_t base;
|
|
int n_args;
|
|
void *fun;
|
|
} mp_obj_fun_asm_t;
|
|
|
|
typedef machine_uint_t (*inline_asm_fun_0_t)();
|
|
typedef machine_uint_t (*inline_asm_fun_1_t)(machine_uint_t);
|
|
typedef machine_uint_t (*inline_asm_fun_2_t)(machine_uint_t, machine_uint_t);
|
|
typedef machine_uint_t (*inline_asm_fun_3_t)(machine_uint_t, machine_uint_t, machine_uint_t);
|
|
|
|
// convert a Micro Python object to a sensible value for inline asm
|
|
STATIC machine_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
|
|
// TODO for byte_array, pass pointer to the array
|
|
if (MP_OBJ_IS_SMALL_INT(obj)) {
|
|
return MP_OBJ_SMALL_INT_VALUE(obj);
|
|
} else if (obj == mp_const_none) {
|
|
return 0;
|
|
} else if (obj == mp_const_false) {
|
|
return 0;
|
|
} else if (obj == mp_const_true) {
|
|
return 1;
|
|
} else if (MP_OBJ_IS_STR(obj)) {
|
|
// pointer to the string (it's probably constant though!)
|
|
uint l;
|
|
return (machine_uint_t)mp_obj_str_get_data(obj, &l);
|
|
#if MICROPY_ENABLE_FLOAT
|
|
} else if (MP_OBJ_IS_TYPE(obj, &mp_type_float)) {
|
|
// convert float to int (could also pass in float registers)
|
|
return (machine_int_t)mp_obj_float_get(obj);
|
|
#endif
|
|
} else if (MP_OBJ_IS_TYPE(obj, &mp_type_tuple)) {
|
|
// pointer to start of tuple (could pass length, but then could use len(x) for that)
|
|
uint len;
|
|
mp_obj_t *items;
|
|
mp_obj_tuple_get(obj, &len, &items);
|
|
return (machine_uint_t)items;
|
|
} else if (MP_OBJ_IS_TYPE(obj, &mp_type_list)) {
|
|
// pointer to start of list (could pass length, but then could use len(x) for that)
|
|
uint len;
|
|
mp_obj_t *items;
|
|
mp_obj_list_get(obj, &len, &items);
|
|
return (machine_uint_t)items;
|
|
} else {
|
|
// just pass along a pointer to the object
|
|
return (machine_uint_t)obj;
|
|
}
|
|
}
|
|
|
|
// convert a return value from inline asm to a sensible Micro Python object
|
|
STATIC mp_obj_t convert_val_from_inline_asm(machine_uint_t val) {
|
|
return MP_OBJ_NEW_SMALL_INT(val);
|
|
}
|
|
|
|
STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
|
|
mp_obj_fun_asm_t *self = self_in;
|
|
|
|
if (n_args != self->n_args) {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", self->n_args, n_args));
|
|
}
|
|
if (n_kw != 0) {
|
|
nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
|
|
}
|
|
|
|
machine_uint_t ret;
|
|
if (n_args == 0) {
|
|
ret = ((inline_asm_fun_0_t)self->fun)();
|
|
} else if (n_args == 1) {
|
|
ret = ((inline_asm_fun_1_t)self->fun)(convert_obj_for_inline_asm(args[0]));
|
|
} else if (n_args == 2) {
|
|
ret = ((inline_asm_fun_2_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
|
|
} else if (n_args == 3) {
|
|
ret = ((inline_asm_fun_3_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
|
|
} else {
|
|
assert(0);
|
|
ret = 0;
|
|
}
|
|
|
|
return convert_val_from_inline_asm(ret);
|
|
}
|
|
|
|
STATIC const mp_obj_type_t mp_type_fun_asm = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = fun_asm_call,
|
|
};
|
|
|
|
mp_obj_t mp_obj_new_fun_asm(uint n_args, void *fun) {
|
|
mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
|
|
o->base.type = &mp_type_fun_asm;
|
|
o->n_args = n_args;
|
|
o->fun = fun;
|
|
return o;
|
|
}
|