Damien George a96afae90f stm32/sdio: Fix case of SDIO DMA turning off mid transfer.
The DMA driver will turn off DMA if it hasn't been used for an amount of
time (to save power).  The SDIO driver for cyw43 WLAN was not informing the
DMA driver that it was using DMA and there was a chance that the DMA would
turn off in the middle of an SDIO DMA transfer.  The symptoms of this would
be printing of SDIO error messages and a failure to communicate with the
cyw43 WLAN module.

This commit fixes this issue by changing the SDIO driver to use the
dma_nohal_XXX API to initialise and start the DMA.

Signed-off-by: Damien George <damien@micropython.org>
2021-05-21 00:08:13 +10:00

488 lines
17 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018-2019 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/mperrno.h"
#include "py/mphal.h"
#include "dma.h"
#include "pin.h"
#include "pin_static_af.h"
#include "pendsv.h"
#include "sdio.h"
#if MICROPY_PY_NETWORK_CYW43
#define DEFAULT_MASK (0)
enum {
SDMMC_IRQ_STATE_DONE,
SDMMC_IRQ_STATE_CMD_DONE,
SDMMC_IRQ_STATE_CMD_DATA_PENDING,
};
static volatile int sdmmc_irq_state;
static volatile uint32_t sdmmc_block_size_log2;
static volatile bool sdmmc_write;
static volatile bool sdmmc_dma;
static volatile uint32_t sdmmc_error;
static volatile uint8_t *sdmmc_buf_cur;
static volatile uint8_t *sdmmc_buf_top;
// The H7/F7/L4 have 2 SDMMC peripherals, but at the moment this driver only supports
// using one of them in a given build, selected by MICROPY_HW_SDIO_SDMMC.
#if MICROPY_HW_SDIO_SDMMC == 1
#define SDMMC SDMMC1
#define SDMMC_IRQn SDMMC1_IRQn
#define SDMMC_IRQHandler SDMMC1_IRQHandler
#define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC1_CLK_ENABLE()
#define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC1_CLK_DISABLE()
#define SDMMC_IS_CLK_DISABLED() __HAL_RCC_SDMMC1_IS_CLK_DISABLED()
#define STATIC_AF_SDMMC_CK STATIC_AF_SDMMC1_CK
#define STATIC_AF_SDMMC_CMD STATIC_AF_SDMMC1_CMD
#define STATIC_AF_SDMMC_D0 STATIC_AF_SDMMC1_D0
#define STATIC_AF_SDMMC_D1 STATIC_AF_SDMMC1_D1
#define STATIC_AF_SDMMC_D2 STATIC_AF_SDMMC1_D2
#define STATIC_AF_SDMMC_D3 STATIC_AF_SDMMC1_D3
#else
#if defined(STM32F7)
#error Due to DMA configuration, only SDMMC1 is currently supported on F7
#endif
#define SDMMC SDMMC2
#define SDMMC_IRQn SDMMC2_IRQn
#define SDMMC_IRQHandler SDMMC2_IRQHandler
#define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC2_CLK_ENABLE()
#define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC2_CLK_DISABLE()
#define SDMMC_IS_CLK_DISABLED() __HAL_RCC_SDMMC2_IS_CLK_DISABLED()
#define STATIC_AF_SDMMC_CK STATIC_AF_SDMMC2_CK
#define STATIC_AF_SDMMC_CMD STATIC_AF_SDMMC2_CMD
#define STATIC_AF_SDMMC_D0 STATIC_AF_SDMMC2_D0
#define STATIC_AF_SDMMC_D1 STATIC_AF_SDMMC2_D1
#define STATIC_AF_SDMMC_D2 STATIC_AF_SDMMC2_D2
#define STATIC_AF_SDMMC_D3 STATIC_AF_SDMMC2_D3
#endif
// If no custom SDIO pins defined, use the default ones
#ifndef MICROPY_HW_SDIO_CK
#define MICROPY_HW_SDIO_D0 (pin_C8)
#define MICROPY_HW_SDIO_D1 (pin_C9)
#define MICROPY_HW_SDIO_D2 (pin_C10)
#define MICROPY_HW_SDIO_D3 (pin_C11)
#define MICROPY_HW_SDIO_CK (pin_C12)
#define MICROPY_HW_SDIO_CMD (pin_D2)
#endif
void sdio_init(uint32_t irq_pri) {
// configure IO pins
mp_hal_pin_config_alt_static(MICROPY_HW_SDIO_D0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDMMC_D0);
mp_hal_pin_config_alt_static(MICROPY_HW_SDIO_D1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDMMC_D1);
mp_hal_pin_config_alt_static(MICROPY_HW_SDIO_D2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDMMC_D2);
mp_hal_pin_config_alt_static(MICROPY_HW_SDIO_D3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDMMC_D3);
mp_hal_pin_config_alt_static(MICROPY_HW_SDIO_CK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_SDMMC_CK);
mp_hal_pin_config_alt_static(MICROPY_HW_SDIO_CMD, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDMMC_CMD);
SDMMC_CLK_ENABLE(); // enable SDIO peripheral
SDMMC_TypeDef *SDIO = SDMMC;
#if defined(STM32F7)
SDIO->CLKCR = SDMMC_CLKCR_HWFC_EN | SDMMC_CLKCR_PWRSAV | (120 - 2); // 1-bit, 400kHz
#else
SDIO->CLKCR = SDMMC_CLKCR_HWFC_EN | SDMMC_CLKCR_PWRSAV | (120 / 2); // 1-bit, 400kHz
#endif
mp_hal_delay_us(10);
SDIO->POWER = 3; // the card is clocked
mp_hal_delay_us(10);
SDIO->DCTRL = SDMMC_DCTRL_RWMOD; // RWMOD is SDIO_CK
#if defined(STM32F7)
SDIO->CLKCR |= SDMMC_CLKCR_CLKEN;
#endif
mp_hal_delay_us(10);
#if defined(STM32F7)
__HAL_RCC_DMA2_CLK_ENABLE(); // enable DMA2 peripheral
#endif
NVIC_SetPriority(SDMMC_IRQn, irq_pri);
SDIO->MASK = 0;
HAL_NVIC_EnableIRQ(SDMMC_IRQn);
}
void sdio_deinit(void) {
SDMMC_CLK_DISABLE();
#if defined(STM32F7)
__HAL_RCC_DMA2_CLK_DISABLE();
#endif
}
void sdio_reenable(void) {
if (SDMMC_IS_CLK_DISABLED()) {
SDMMC_CLK_ENABLE(); // enable SDIO peripheral
sdio_enable_high_speed_4bit();
}
}
void sdio_enable_irq(bool enable) {
if (enable) {
SDMMC->MASK |= SDMMC_MASK_SDIOITIE;
} else {
SDMMC->MASK &= ~SDMMC_MASK_SDIOITIE;
}
}
void sdio_enable_high_speed_4bit(void) {
SDMMC_TypeDef *SDIO = SDMMC;
SDIO->POWER = 0; // power off
mp_hal_delay_us(10);
#if defined(STM32F7)
SDIO->CLKCR = SDMMC_CLKCR_HWFC_EN | SDMMC_CLKCR_WIDBUS_0 | SDMMC_CLKCR_BYPASS /*| SDMMC_CLKCR_PWRSAV*/; // 4-bit, 48MHz
#else
SDIO->CLKCR = SDMMC_CLKCR_HWFC_EN | SDMMC_CLKCR_WIDBUS_0; // 4-bit, 48MHz
#endif
mp_hal_delay_us(10);
SDIO->POWER = 3; // the card is clocked
mp_hal_delay_us(10);
SDIO->DCTRL = SDMMC_DCTRL_SDIOEN | SDMMC_DCTRL_RWMOD; // SDIOEN, RWMOD is SDIO_CK
#if defined(STM32F7)
SDIO->CLKCR |= SDMMC_CLKCR_CLKEN;
#endif
SDIO->MASK = DEFAULT_MASK;
mp_hal_delay_us(10);
}
void SDMMC_IRQHandler(void) {
if (SDMMC->STA & SDMMC_STA_CMDREND) {
SDMMC->ICR = SDMMC_ICR_CMDRENDC;
uint32_t r1 = SDMMC->RESP1;
if (SDMMC->RESPCMD == 53 && r1 & 0x800) {
printf("bad RESP1: %lu %lx\n", SDMMC->RESPCMD, r1);
sdmmc_error = 0xffffffff;
SDMMC->MASK &= SDMMC_MASK_SDIOITIE;
sdmmc_irq_state = SDMMC_IRQ_STATE_DONE;
return;
}
#if defined(STM32H7)
if (!sdmmc_dma) {
while (sdmmc_buf_cur < sdmmc_buf_top && (SDMMC->STA & SDMMC_STA_DPSMACT) && !(SDMMC->STA & SDMMC_STA_RXFIFOE)) {
*(uint32_t *)sdmmc_buf_cur = SDMMC->FIFO;
sdmmc_buf_cur += 4;
}
}
#endif
if (sdmmc_buf_cur >= sdmmc_buf_top) {
// data transfer finished, so we are done
SDMMC->MASK &= SDMMC_MASK_SDIOITIE;
sdmmc_irq_state = SDMMC_IRQ_STATE_DONE;
return;
}
if (sdmmc_write) {
SDMMC->DCTRL =
SDMMC_DCTRL_SDIOEN
| SDMMC_DCTRL_RWMOD
| sdmmc_block_size_log2 << SDMMC_DCTRL_DBLOCKSIZE_Pos
#if defined(STM32F7)
| (sdmmc_dma << SDMMC_DCTRL_DMAEN_Pos)
#endif
| (!sdmmc_write) << SDMMC_DCTRL_DTDIR_Pos
| SDMMC_DCTRL_DTEN
;
if (!sdmmc_dma) {
SDMMC->MASK |= SDMMC_MASK_TXFIFOHEIE;
}
}
sdmmc_irq_state = SDMMC_IRQ_STATE_CMD_DONE;
} else if (SDMMC->STA & SDMMC_STA_DATAEND) {
// data transfer complete
// note: it's possible to get DATAEND before CMDREND
SDMMC->ICR = SDMMC_ICR_DATAENDC;
#if defined(STM32F7)
// check if there is some remaining data in RXFIFO
if (!sdmmc_dma) {
while (SDMMC->STA & SDMMC_STA_RXDAVL) {
*(uint32_t *)sdmmc_buf_cur = SDMMC->FIFO;
sdmmc_buf_cur += 4;
}
}
#endif
if (sdmmc_irq_state == SDMMC_IRQ_STATE_CMD_DONE) {
// command and data finished, so we are done
SDMMC->MASK &= SDMMC_MASK_SDIOITIE;
sdmmc_irq_state = SDMMC_IRQ_STATE_DONE;
}
} else if (SDMMC->STA & SDMMC_STA_TXFIFOHE) {
if (!sdmmc_dma && sdmmc_write) {
// write up to 8 words to fifo
for (size_t i = 8; i && sdmmc_buf_cur < sdmmc_buf_top; --i) {
SDMMC->FIFO = *(uint32_t *)sdmmc_buf_cur;
sdmmc_buf_cur += 4;
}
if (sdmmc_buf_cur >= sdmmc_buf_top) {
// finished, disable IRQ
SDMMC->MASK &= ~SDMMC_MASK_TXFIFOHEIE;
}
}
} else if (SDMMC->STA & SDMMC_STA_RXFIFOHF) {
if (!sdmmc_dma && !sdmmc_write) {
// read up to 8 words from fifo
for (size_t i = 8; i && sdmmc_buf_cur < sdmmc_buf_top; --i) {
*(uint32_t *)sdmmc_buf_cur = SDMMC->FIFO;
sdmmc_buf_cur += 4;
}
}
} else if (SDMMC->STA & SDMMC_STA_SDIOIT) {
SDMMC->MASK &= ~SDMMC_MASK_SDIOITIE;
SDMMC->ICR = SDMMC_ICR_SDIOITC;
#if MICROPY_PY_NETWORK_CYW43
extern void (*cyw43_poll)(void);
if (cyw43_poll) {
pendsv_schedule_dispatch(PENDSV_DISPATCH_CYW43, cyw43_poll);
}
#endif
} else if (SDMMC->STA & 0x3f) {
// an error
sdmmc_error = SDMMC->STA;
SDMMC->ICR = SDMMC_STATIC_FLAGS;
SDMMC->MASK &= SDMMC_MASK_SDIOITIE;
sdmmc_irq_state = SDMMC_IRQ_STATE_DONE;
}
}
int sdio_transfer(uint32_t cmd, uint32_t arg, uint32_t *resp) {
#if defined(STM32F7)
// Wait for any outstanding TX to complete
while (SDMMC->STA & SDMMC_STA_TXACT) {
}
#endif
#if defined(STM32F7)
DMA2_Stream3->CR = 0; // ensure DMA is reset
#endif
SDMMC->ICR = SDMMC_STATIC_FLAGS; // clear interrupts
SDMMC->ARG = arg;
SDMMC->CMD = cmd | SDMMC_CMD_WAITRESP_0 | SDMMC_CMD_CPSMEN;
sdmmc_irq_state = SDMMC_IRQ_STATE_CMD_DATA_PENDING;
sdmmc_error = 0;
sdmmc_buf_cur = NULL;
sdmmc_buf_top = NULL;
SDMMC->MASK = (SDMMC->MASK & SDMMC_MASK_SDIOITIE) | SDMMC_MASK_CMDRENDIE | 0x3f;
uint32_t start = mp_hal_ticks_ms();
for (;;) {
__WFI();
if (sdmmc_irq_state == SDMMC_IRQ_STATE_DONE) {
break;
}
if (mp_hal_ticks_ms() - start > 1000) {
SDMMC->MASK = DEFAULT_MASK;
printf("sdio_transfer timeout STA=0x%08x\n", (uint)SDMMC->STA);
return -MP_ETIMEDOUT;
}
}
SDMMC->MASK &= SDMMC_MASK_SDIOITIE;
if (sdmmc_error == SDMMC_STA_CCRCFAIL && cmd == 5) {
// Errata: CMD CRC error is incorrectly generated for CMD 5
return 0;
} else if (sdmmc_error) {
return -(0x1000000 | sdmmc_error);
}
uint32_t rcmd = SDMMC->RESPCMD;
if (rcmd != cmd) {
printf("sdio_transfer: cmd=%lu rcmd=%lu\n", cmd, rcmd);
return -MP_EIO;
}
if (resp != NULL) {
*resp = SDMMC->RESP1;
}
return 0;
}
int sdio_transfer_cmd53(bool write, uint32_t block_size, uint32_t arg, size_t len, uint8_t *buf) {
#if defined(STM32F7)
// Wait for any outstanding TX to complete
while (SDMMC->STA & SDMMC_STA_TXACT) {
}
#endif
// for SDIO_BYTE_MODE the SDIO chuck of data must be a single block of the length of buf
int block_size_log2 = 0;
if (block_size == 4) {
block_size_log2 = 2;
} else if (block_size == 8) {
block_size_log2 = 3;
} else if (block_size == 16) {
block_size_log2 = 4;
} else if (block_size == 32) {
block_size_log2 = 5;
} else if (block_size == 64) {
block_size_log2 = 6;
} else if (block_size == 128) {
block_size_log2 = 7;
} else if (block_size == 256) {
block_size_log2 = 8;
} else {
printf("sdio_transfer_cmd53: invalid block_size %lu", block_size);
return -MP_EINVAL;
}
bool dma = (len > 16);
SDMMC->ICR = SDMMC_STATIC_FLAGS; // clear interrupts
SDMMC->MASK &= SDMMC_MASK_SDIOITIE;
SDMMC->DTIMER = 0x2000000; // about 700ms running at 48MHz
SDMMC->DLEN = (len + block_size - 1) & ~(block_size - 1);
#if defined(STM32F7)
DMA2_Stream3->CR = 0;
#endif
if (dma) {
// prepare DMA so it's ready when the DPSM starts its transfer
#if defined(STM32F7)
// enable DMA2 peripheral in case it was turned off by someone else
RCC->AHB1ENR |= RCC_AHB1ENR_DMA2EN;
#endif
if (write) {
// make sure cache is flushed to RAM so the DMA can read the correct data
MP_HAL_CLEAN_DCACHE(buf, len);
} else {
// make sure cache is flushed and invalidated so when DMA updates the RAM
// from reading the peripheral the CPU then reads the new data
MP_HAL_CLEANINVALIDATE_DCACHE(buf, len);
}
#if defined(STM32F7)
if ((uint32_t)buf & 3) {
printf("sdio_transfer_cmd53: buf=%p is not aligned for DMA\n", buf);
return -MP_EINVAL;
}
uint32_t dma_config =
2 << DMA_SxCR_MSIZE_Pos // MSIZE word
| 2 << DMA_SxCR_PSIZE_Pos // PSIZE word
| write << DMA_SxCR_DIR_Pos // DIR mem-to-periph
| 1 << DMA_SxCR_PFCTRL_Pos // PFCTRL periph is flow controller
;
uint32_t dma_src = (uint32_t)buf;
uint32_t dma_dest = (uint32_t)&SDMMC->FIFO;
uint32_t dma_len = ((len + block_size - 1) & ~(block_size - 1)) / 4;
dma_nohal_init(&dma_SDIO_0, dma_config);
dma_nohal_start(&dma_SDIO_0, dma_src, dma_dest, dma_len);
#else
SDMMC->IDMABASE0 = (uint32_t)buf;
SDMMC->IDMACTRL = SDMMC_IDMA_IDMAEN;
#endif
} else {
#if defined(STM32H7)
SDMMC->IDMACTRL = 0;
#endif
}
// for reading, need to initialise the DPSM before starting the CPSM
// so that the DPSM is ready to receive when the device sends data
// (and in case we get a long-running unrelated IRQ here on the host just
// after writing to CMD to initiate the command)
if (!write) {
SDMMC->DCTRL =
SDMMC_DCTRL_SDIOEN
| SDMMC_DCTRL_RWMOD
| block_size_log2 << SDMMC_DCTRL_DBLOCKSIZE_Pos
#if defined(STM32F7)
| (dma << SDMMC_DCTRL_DMAEN_Pos)
#endif
| (!write) << SDMMC_DCTRL_DTDIR_Pos
| SDMMC_DCTRL_DTEN
;
}
SDMMC->ARG = arg;
SDMMC->CMD = 53 | SDMMC_CMD_WAITRESP_0 | SDMMC_CMD_CPSMEN;
sdmmc_irq_state = SDMMC_IRQ_STATE_CMD_DATA_PENDING;
sdmmc_block_size_log2 = block_size_log2;
sdmmc_write = write;
sdmmc_dma = dma;
sdmmc_error = 0;
sdmmc_buf_cur = (uint8_t *)buf;
sdmmc_buf_top = (uint8_t *)buf + len;
SDMMC->MASK = (SDMMC->MASK & SDMMC_MASK_SDIOITIE) | SDMMC_MASK_CMDRENDIE | SDMMC_MASK_DATAENDIE | SDMMC_MASK_RXFIFOHFIE | 0x3f;
// wait to complete transfer
uint32_t start = mp_hal_ticks_ms();
for (;;) {
__WFI();
if (sdmmc_irq_state == SDMMC_IRQ_STATE_DONE) {
break;
}
if (mp_hal_ticks_ms() - start > 200) {
SDMMC->MASK &= SDMMC_MASK_SDIOITIE;
#if defined(STM32F7)
printf("sdio_transfer_cmd53: timeout wr=%d len=%u dma=%u buf_idx=%u STA=%08x SDMMC=%08x:%08x DMA=%08x:%08x:%08x RCC=%08x\n", write, (uint)len, (uint)dma, sdmmc_buf_cur - buf, (uint)SDMMC->STA, (uint)SDMMC->DCOUNT, (uint)SDMMC->FIFOCNT, (uint)DMA2->LISR, (uint)DMA2->HISR, (uint)DMA2_Stream3->NDTR, (uint)RCC->AHB1ENR);
#else
printf("sdio_transfer_cmd53: timeout wr=%d len=%u dma=%u buf_idx=%u STA=%08x SDMMC=%08x:%08x IDMA=%08x\n", write, (uint)len, (uint)dma, sdmmc_buf_cur - buf, (uint)SDMMC->STA, (uint)SDMMC->DCOUNT, (uint)SDMMC->DCTRL, (uint)SDMMC->IDMACTRL);
#endif
if (sdmmc_dma) {
dma_nohal_deinit(&dma_SDIO_0);
}
return -MP_ETIMEDOUT;
}
}
SDMMC->MASK &= SDMMC_MASK_SDIOITIE;
if (sdmmc_error) {
#if defined(STM32F7)
printf("sdio_transfer_cmd53: error=%08lx wr=%d len=%u dma=%u buf_idx=%u STA=%08x SDMMC=%08x:%08x DMA=%08x:%08x:%08x RCC=%08x\n", sdmmc_error, write, (uint)len, (uint)dma, sdmmc_buf_cur - buf, (uint)SDMMC->STA, (uint)SDMMC->DCOUNT, (uint)SDMMC->FIFOCNT, (uint)DMA2->LISR, (uint)DMA2->HISR, (uint)DMA2_Stream3->NDTR, (uint)RCC->AHB1ENR);
#else
printf("sdio_transfer_cmd53: error=%08lx wr=%d len=%u dma=%u buf_idx=%u STA=%08x SDMMC=%08x:%08x IDMA=%08x\n", sdmmc_error, write, (uint)len, (uint)dma, sdmmc_buf_cur - buf, (uint)SDMMC->STA, (uint)SDMMC->DCOUNT, (uint)SDMMC->DCTRL, (uint)SDMMC->IDMACTRL);
#endif
if (sdmmc_dma) {
dma_nohal_deinit(&dma_SDIO_0);
}
return -(0x1000000 | sdmmc_error);
}
if (!sdmmc_dma) {
if (sdmmc_buf_cur != sdmmc_buf_top) {
printf("sdio_transfer_cmd53: didn't transfer correct length: cur=%p top=%p\n", sdmmc_buf_cur, sdmmc_buf_top);
return -MP_EIO;
}
} else {
dma_nohal_deinit(&dma_SDIO_0);
}
return 0;
}
#endif