699 lines
24 KiB
C
699 lines
24 KiB
C
/*
|
|
This file is part of the ArduinoBLE library.
|
|
Copyright (c) 2018 Arduino SA. All rights reserved.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "hci_api.h"
|
|
|
|
#include "py/obj.h"
|
|
|
|
// Zephyr include files to define HCI communication values and structs.
|
|
#include "hci_include/hci.h"
|
|
#include "hci_include/hci_err.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include "supervisor/shared/tick.h"
|
|
#include "shared-bindings/_bleio/__init__.h"
|
|
#include "common-hal/_bleio/Adapter.h"
|
|
|
|
// HCI H4 protocol packet types: first byte in the packet.
|
|
#define H4_CMD 0x01
|
|
#define H4_ACL 0x02
|
|
#define H4_SCO 0x03
|
|
#define H4_EVT 0x04
|
|
|
|
//FIX replace
|
|
#define ATT_CID 0x0004
|
|
|
|
#define sizeof_field(TYPE, MEMBER) sizeof((((TYPE *)0)->MEMBER))
|
|
|
|
#define RX_BUFFER_SIZE (3 + 255)
|
|
#define ACL_PKT_BUFFER_SIZE (255)
|
|
|
|
#define CTS_TIMEOUT_MSECS (1000)
|
|
#define RESPONSE_TIMEOUT_MSECS (1000)
|
|
|
|
#define adapter (&common_hal_bleio_adapter_obj)
|
|
|
|
STATIC uint8_t rx_buffer[RX_BUFFER_SIZE];
|
|
STATIC size_t rx_idx;
|
|
|
|
STATIC size_t num_command_packets_allowed;
|
|
STATIC size_t max_pkt;
|
|
STATIC size_t pending_pkt;
|
|
|
|
// Results from parsing a command response packet.
|
|
STATIC bool cmd_response_received;
|
|
STATIC uint16_t cmd_response_opcode;
|
|
STATIC uint8_t cmd_response_status;
|
|
STATIC size_t cmd_response_len;
|
|
STATIC uint8_t* cmd_response_data;
|
|
|
|
//FIX STATIC uint8_t acl_pkt_buffer[ACL_PKT_BUFFER_SIZE];
|
|
|
|
STATIC bool debug = true;
|
|
|
|
// These are the headers of the full packets that are sent over the serial interface.
|
|
// They all have a one-byte type-field at the front, one of the H4_xxx packet types.
|
|
|
|
typedef struct __attribute__ ((packed)) {
|
|
uint8_t pkt_type;
|
|
uint16_t opcode;
|
|
uint8_t param_len;
|
|
} h4_hci_cmd_hdr_t;
|
|
|
|
typedef struct __attribute__ ((packed)) {
|
|
uint8_t pkt_type;
|
|
uint16_t handle;
|
|
uint16_t total_data_len;
|
|
uint16_t acl_data_len;
|
|
uint16_t cid;
|
|
} h4_hci_acl_hdr_t;
|
|
|
|
typedef struct __attribute__ ((packed)) {
|
|
uint8_t pkt_type;
|
|
uint8_t evt;
|
|
uint8_t param_len;
|
|
} h4_hci_evt_hdr_t;
|
|
|
|
|
|
STATIC void dump_cmd_pkt(bool tx, uint8_t pkt_len, uint8_t pkt_data[]) {
|
|
if (debug) {
|
|
h4_hci_cmd_hdr_t *pkt = (h4_hci_cmd_hdr_t *) pkt_data;
|
|
mp_printf(&mp_plat_print,
|
|
"%s HCI COMMAND (%x) opcode: %04x, len: %d, data: ",
|
|
tx ? "TX->" : "RX<-",
|
|
pkt->pkt_type, pkt->opcode, pkt->param_len);
|
|
uint8_t i;
|
|
for (i = sizeof(h4_hci_cmd_hdr_t); i < pkt_len; i++) {
|
|
mp_printf(&mp_plat_print, "%02x ", pkt_data[i]);
|
|
}
|
|
if (i != pkt->param_len + sizeof(h4_hci_cmd_hdr_t)) {
|
|
mp_printf(&mp_plat_print, " LENGTH MISMATCH");
|
|
}
|
|
mp_printf(&mp_plat_print, "\n");
|
|
}
|
|
}
|
|
|
|
STATIC void dump_acl_pkt(bool tx, uint8_t pkt_len, uint8_t pkt_data[]) {
|
|
if (debug) {
|
|
h4_hci_acl_hdr_t *pkt = (h4_hci_acl_hdr_t *) pkt_data;
|
|
mp_printf(&mp_plat_print,
|
|
"%s HCI ACLDATA (%x) handle: %04x, total_data_len: %d, acl_data_len: %d, cid: %04x, data: ",
|
|
tx ? "TX->" : "RX<-",
|
|
pkt->pkt_type, pkt->handle, pkt->total_data_len, pkt->acl_data_len, pkt->cid);
|
|
uint8_t i;
|
|
for (i = sizeof(h4_hci_acl_hdr_t); i < pkt_len; i++) {
|
|
mp_printf(&mp_plat_print, "%02x ", pkt_data[i]);
|
|
}
|
|
if (i != pkt->acl_data_len + sizeof(h4_hci_acl_hdr_t)) {
|
|
mp_printf(&mp_plat_print, " LENGTH MISMATCH");
|
|
}
|
|
mp_printf(&mp_plat_print, "\n");
|
|
}
|
|
}
|
|
|
|
STATIC void dump_evt_pkt(bool tx, uint8_t pkt_len, uint8_t pkt_data[]) {
|
|
if (debug) {
|
|
h4_hci_evt_hdr_t *pkt = (h4_hci_evt_hdr_t *) pkt_data;
|
|
mp_printf(&mp_plat_print,
|
|
"%s HCI EVENT (%x) evt: %02x, param_len: %d, data: ",
|
|
tx ? "TX->" : "RX<-",
|
|
pkt->pkt_type, pkt->evt, pkt->param_len);
|
|
uint8_t i;
|
|
for (i = sizeof(h4_hci_evt_hdr_t); i < pkt_len; i++) {
|
|
mp_printf(&mp_plat_print, "%02x ", pkt_data[i]);
|
|
}
|
|
if (i != pkt->param_len + sizeof(h4_hci_evt_hdr_t)) {
|
|
mp_printf(&mp_plat_print, " LENGTH MISMATCH");
|
|
}
|
|
mp_printf(&mp_plat_print, "\n");
|
|
}
|
|
}
|
|
|
|
STATIC void process_acl_data_pkt(uint8_t pkt_len, uint8_t pkt_data[]) {
|
|
//FIX pkt_len is +1 than before, because it includes the pkt_type.
|
|
// h4_hci_acl_hdr_t *aclHdr = (h4_hci_acl_hdr_t*)pkt_data;
|
|
|
|
// uint16_t aclFlags = (aclHdr->handle & 0xf000) >> 12;
|
|
|
|
// if ((aclHdr->data_len - 4) != aclHdr->len) {
|
|
// // packet is fragmented
|
|
// if (aclFlags != 0x01) {
|
|
// // copy into ACL buffer
|
|
// memcpy(acl_pkt_buffer, &rx_buffer[1], sizeof(HCIACLHdr) + aclHdr->data_len - 4);
|
|
// } else {
|
|
// // copy next chunk into the buffer
|
|
// HCIACLHdr* aclBufferHeader = (HCIACLHdr*)acl_pkt_buffer;
|
|
|
|
// memcpy(&acl_pkt_buffer[sizeof(HCIACLHdr) + aclBufferHeader->data_len - 4], &rx_buffer[1 + sizeof(aclHdr->handle) + sizeof(aclHdr->data_len)], aclHdr->data_len);
|
|
|
|
// aclBufferHeader->data_len += aclHdr->data_len;
|
|
// aclHdr = aclBufferHeader;
|
|
// }
|
|
// }
|
|
|
|
// if ((aclHdr->data_len - 4) != aclHdr->len) {
|
|
// // don't have the full packet yet
|
|
// return;
|
|
// }
|
|
|
|
// if (aclHdr->cid == ATT_CID) {
|
|
// if (aclFlags == 0x01) {
|
|
// // use buffered packet
|
|
// ATT.handleData(aclHdr->handle & 0x0fff, aclHdr->len, &acl_pkt_buffer[sizeof(HCIACLHdr)]);
|
|
// } else {
|
|
// // use the rx buffer
|
|
// ATT.handleData(aclHdr->handle & 0x0fff, aclHdr->len, &rx_buffer[1 + sizeof(HCIACLHdr)]);
|
|
// }
|
|
// } else if (aclHdr->cid == SIGNALING_CID) {
|
|
// L2CAPSignaling.handleData(aclHdr->handle & 0x0fff, aclHdr->len, &rx_buffer[1 + sizeof(HCIACLHdr)]);
|
|
// } else {
|
|
// struct __attribute__ ((packed)) {
|
|
// uint8_t op;
|
|
// uint8_t id;
|
|
// uint16_t length;
|
|
// uint16_t reason;
|
|
// uint16_t localCid;
|
|
// uint16_t remoteCid;
|
|
// } l2capRejectCid= { 0x01, 0x00, 0x006, 0x0002, aclHdr->cid, 0x0000 };
|
|
|
|
// sendAclPkt(aclHdr->handle & 0x0fff, 0x0005, sizeof(l2capRejectCid), &l2capRejectCid);
|
|
// }
|
|
}
|
|
|
|
// Process number of completed packets. Reduce number of pending packets by reported
|
|
// number of completed.
|
|
STATIC void process_num_comp_pkts(uint16_t handle, uint16_t num_pkts) {
|
|
if (num_pkts && pending_pkt > num_pkts) {
|
|
pending_pkt -= num_pkts;
|
|
} else {
|
|
pending_pkt = 0;
|
|
}
|
|
}
|
|
|
|
STATIC void process_evt_pkt(size_t pkt_len, uint8_t pkt[])
|
|
{
|
|
h4_hci_evt_hdr_t *evt_hdr = (h4_hci_evt_hdr_t*) pkt;
|
|
// The data itself, after the header.
|
|
uint8_t *evt_data = pkt + sizeof(h4_hci_evt_hdr_t);
|
|
|
|
switch (evt_hdr->evt) {
|
|
case BT_HCI_EVT_DISCONN_COMPLETE: {
|
|
struct bt_hci_evt_disconn_complete *disconn_complete = (struct bt_hci_evt_disconn_complete*) evt_data;
|
|
(void) disconn_complete;
|
|
//FIX
|
|
// ATT.removeConnection(disconn_complete->handle, disconn_complete->reason);
|
|
// L2CAPSignaling.removeConnection(disconn_complete->handle, disconn_complete->reason);
|
|
hci_le_set_advertise_enable(0x01);
|
|
break;
|
|
}
|
|
|
|
case BT_HCI_EVT_CMD_COMPLETE: {
|
|
|
|
struct cmd_complete_with_status {
|
|
struct bt_hci_evt_cmd_complete cmd_complete;
|
|
struct bt_hci_evt_cc_status cc_status;
|
|
} __packed;
|
|
|
|
struct cmd_complete_with_status *evt = (struct cmd_complete_with_status *) evt_data;
|
|
|
|
num_command_packets_allowed = evt->cmd_complete.ncmd;
|
|
|
|
cmd_response_received = true;
|
|
cmd_response_opcode = evt->cmd_complete.opcode;
|
|
cmd_response_status = evt->cc_status.status;
|
|
// All the bytes following cmd_complete, -including- the status byte, which is
|
|
// included in all the _bt_hci_rp_* structs.
|
|
cmd_response_data = &evt_data[sizeof_field(struct cmd_complete_with_status, cmd_complete)];
|
|
// Includes status byte.
|
|
cmd_response_len = evt_hdr->param_len - sizeof_field(struct cmd_complete_with_status, cmd_complete);
|
|
|
|
break;
|
|
}
|
|
|
|
case BT_HCI_EVT_CMD_STATUS: {
|
|
struct bt_hci_evt_cmd_status *evt = (struct bt_hci_evt_cmd_status *) evt_data;
|
|
|
|
num_command_packets_allowed = evt->ncmd;
|
|
|
|
cmd_response_received = true;
|
|
cmd_response_opcode = evt->opcode;
|
|
cmd_response_status = evt->status;
|
|
cmd_response_data = NULL;
|
|
cmd_response_len = 0;
|
|
|
|
break;
|
|
}
|
|
|
|
case BT_HCI_EVT_NUM_COMPLETED_PACKETS: {
|
|
struct bt_hci_evt_num_completed_packets *evt = (struct bt_hci_evt_num_completed_packets *) evt_data;
|
|
|
|
// Start at zero-th pair: (conn handle, num completed packets).
|
|
struct bt_hci_handle_count *handle_and_count = &(evt->h[0]);
|
|
for (uint8_t i = 0; i < evt->num_handles; i++) {
|
|
process_num_comp_pkts(handle_and_count->handle, handle_and_count->count);
|
|
handle_and_count++;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case BT_HCI_EVT_LE_META_EVENT: {
|
|
struct bt_hci_evt_le_meta_event *meta_evt = (struct bt_hci_evt_le_meta_event *) evt_data;
|
|
// Start of the encapsulated LE event.
|
|
uint8_t *le_evt = evt_data + sizeof (struct bt_hci_evt_le_meta_event);
|
|
|
|
if (meta_evt->subevent == BT_HCI_EVT_LE_CONN_COMPLETE) {
|
|
struct bt_hci_evt_le_conn_complete *le_conn_complete =
|
|
(struct bt_hci_evt_le_conn_complete *) le_evt;
|
|
|
|
if (le_conn_complete->status == 0x00) {
|
|
// ATT.addConnection(le_conn_complete->handle,
|
|
// le_conn_complete->role,
|
|
// le_conn_complete->peer_addr //FIX struct
|
|
// le_conn_complete->interval,
|
|
// le_conn_complete->latency,
|
|
// le_conn_complete->supv_timeout
|
|
// le_conn_complete->clock_accuracy);
|
|
|
|
// L2CAPSignaling.addConnection(le_conn_complete->handle,
|
|
// le_conn_complete->role,
|
|
// le_conn_complete->peer_addr, //FIX struct
|
|
// le_conn_complete->interval,
|
|
// le_conn_complete->latency,
|
|
// le_conn_complete->supv_timeout,
|
|
// le_conn_complete->clock_accuracy);
|
|
}
|
|
} else if (meta_evt->subevent == BT_HCI_EVT_LE_ADVERTISING_REPORT) {
|
|
struct bt_hci_evt_le_advertising_info *le_advertising_info =
|
|
(struct bt_hci_evt_le_advertising_info *) le_evt;
|
|
if (le_advertising_info->evt_type == BT_HCI_ADV_DIRECT_IND) { //FIX handle kind of advertising
|
|
// last byte is RSSI
|
|
// GAP.handleLeAdvertisingReport(leAdvertisingReport->type,
|
|
// leAdvertisingReport->peerBdaddrType,
|
|
// leAdvertisingReport->peerBdaddr,
|
|
// leAdvertisingReport->eirLength,
|
|
// leAdvertisingReport->eirData,
|
|
// rssi); //FIX, don't separate
|
|
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void hci_init(void) {
|
|
rx_idx = 0;
|
|
pending_pkt = 0;
|
|
}
|
|
|
|
hci_result_t hci_poll_for_incoming_pkt(void) {
|
|
// Assert RTS low to say we're ready to read data.
|
|
common_hal_digitalio_digitalinout_set_value(adapter->rts_digitalinout, false);
|
|
|
|
int errcode = 0;
|
|
bool packet_is_complete = false;
|
|
|
|
// Read bytes until we run out, or accumulate a complete packet.
|
|
while (common_hal_busio_uart_rx_characters_available(adapter->hci_uart)) {
|
|
common_hal_busio_uart_read(adapter->hci_uart, rx_buffer + rx_idx, 1, &errcode);
|
|
if (errcode) {
|
|
return HCI_READ_ERROR;
|
|
}
|
|
rx_idx++;
|
|
|
|
switch (rx_buffer[0]) {
|
|
case H4_ACL:
|
|
if (rx_idx > sizeof(h4_hci_acl_hdr_t) &&
|
|
rx_idx >= sizeof(h4_hci_acl_hdr_t) + ((h4_hci_acl_hdr_t *) rx_buffer)->total_data_len) {
|
|
packet_is_complete = true;
|
|
}
|
|
break;
|
|
|
|
case H4_EVT:
|
|
if (rx_idx > sizeof(h4_hci_evt_hdr_t) &&
|
|
rx_idx >= sizeof(h4_hci_evt_hdr_t) + ((h4_hci_evt_hdr_t *) rx_buffer)->param_len) {
|
|
packet_is_complete = true;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// Unknown or bad packet type. Start over.
|
|
rx_idx = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!packet_is_complete) {
|
|
return HCI_OK;
|
|
}
|
|
|
|
// Stop incoming data while processing packet.
|
|
common_hal_digitalio_digitalinout_set_value(adapter->rts_digitalinout, true);
|
|
size_t pkt_len = rx_idx;
|
|
// Reset for next pack
|
|
rx_idx = 0;
|
|
|
|
switch (rx_buffer[0]) {
|
|
case H4_ACL:
|
|
if (debug) {
|
|
dump_acl_pkt(false, pkt_len, rx_buffer);
|
|
}
|
|
|
|
process_acl_data_pkt(pkt_len, rx_buffer);
|
|
break;
|
|
|
|
case H4_EVT:
|
|
if (debug) {
|
|
dump_evt_pkt(false, pkt_len, rx_buffer);
|
|
}
|
|
|
|
process_evt_pkt(pkt_len, rx_buffer);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
common_hal_digitalio_digitalinout_set_value(adapter->rts_digitalinout, true);
|
|
|
|
return HCI_OK;
|
|
}
|
|
|
|
|
|
// Returns
|
|
STATIC hci_result_t write_pkt(uint8_t *buffer, size_t len) {
|
|
// Wait for CTS to go low before writing to HCI adapter.
|
|
uint64_t start = supervisor_ticks_ms64();
|
|
|
|
while (common_hal_digitalio_digitalinout_get_value(adapter->cts_digitalinout)) {
|
|
RUN_BACKGROUND_TASKS;
|
|
if (supervisor_ticks_ms64() - start > CTS_TIMEOUT_MSECS) {
|
|
return HCI_WRITE_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
int errcode = 0;
|
|
common_hal_busio_uart_write(adapter->hci_uart, buffer, len, &errcode);
|
|
if (errcode) {
|
|
return HCI_WRITE_ERROR;
|
|
}
|
|
|
|
return HCI_OK;
|
|
}
|
|
|
|
STATIC hci_result_t send_command(uint16_t opcode, uint8_t params_len, void* params) {
|
|
uint8_t tx_buffer[sizeof(h4_hci_cmd_hdr_t) + params_len];
|
|
|
|
// cmd header is at the beginning of tx_buffer
|
|
h4_hci_cmd_hdr_t *cmd_hdr = (h4_hci_cmd_hdr_t *) tx_buffer;
|
|
cmd_hdr->pkt_type = H4_CMD;
|
|
cmd_hdr->opcode = opcode;
|
|
cmd_hdr->param_len = params_len;
|
|
|
|
// Copy the params data into the space after the header.
|
|
memcpy(&tx_buffer[sizeof(h4_hci_cmd_hdr_t)], params, params_len);
|
|
|
|
if (debug) {
|
|
dump_cmd_pkt(true, sizeof(tx_buffer), tx_buffer);
|
|
}
|
|
|
|
int result = write_pkt(tx_buffer, sizeof(h4_hci_cmd_hdr_t) + params_len);
|
|
if (result != HCI_OK) {
|
|
return result;
|
|
}
|
|
|
|
cmd_response_received = false;
|
|
|
|
// Wait for a response. Note that other packets may be received that are not
|
|
// command responses.
|
|
uint64_t start = supervisor_ticks_ms64();
|
|
while (1) {
|
|
result = hci_poll_for_incoming_pkt();
|
|
if (result != HCI_OK) {
|
|
// I/O error.
|
|
return result;
|
|
}
|
|
|
|
if (cmd_response_received && cmd_response_opcode == opcode) {
|
|
// If this is definitely a response to the command that was sent,
|
|
// return the status value, which will will be
|
|
// BT_HCI_ERR_SUCCESS (0x00) if the command succeeded,
|
|
// or a BT_HCI_ERR_x value (> 0x00) if there ws a problem.
|
|
return cmd_response_status;
|
|
}
|
|
|
|
if (supervisor_ticks_ms64() - start > RESPONSE_TIMEOUT_MSECS) {
|
|
return HCI_READ_TIMEOUT;
|
|
}
|
|
RUN_BACKGROUND_TASKS;
|
|
}
|
|
|
|
// No I/O error, but no response sent back in time.
|
|
return HCI_NO_RESPONSE;
|
|
}
|
|
|
|
//FIX remove unused
|
|
STATIC int __attribute__((unused)) send_acl_pkt(uint16_t handle, uint8_t cid, void* data, uint8_t data_len) {
|
|
int result;
|
|
while (pending_pkt >= max_pkt) {
|
|
result = hci_poll_for_incoming_pkt();
|
|
if (result != HCI_OK) {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// data_len does not include cid.
|
|
const size_t cid_len = sizeof_field(h4_hci_acl_hdr_t, cid);
|
|
// buf_len is size of entire packet including header.
|
|
const size_t buf_len = sizeof(h4_hci_acl_hdr_t) + cid_len + data_len;
|
|
uint8_t tx_buffer[buf_len];
|
|
|
|
h4_hci_acl_hdr_t *acl_hdr = (h4_hci_acl_hdr_t *) tx_buffer;
|
|
acl_hdr->pkt_type = H4_ACL;
|
|
acl_hdr->handle = handle;
|
|
acl_hdr->total_data_len = (uint8_t)(cid_len + data_len);
|
|
acl_hdr->acl_data_len = (uint8_t) data_len;
|
|
acl_hdr->cid = cid;
|
|
|
|
memcpy(&tx_buffer[sizeof(h4_hci_acl_hdr_t)], data, data_len);
|
|
|
|
if (debug) {
|
|
dump_acl_pkt(true, buf_len, tx_buffer);
|
|
}
|
|
|
|
pending_pkt++;
|
|
|
|
int errcode = 0;
|
|
common_hal_busio_uart_write(adapter->hci_uart, tx_buffer, buf_len, &errcode);
|
|
if (errcode) {
|
|
return HCI_WRITE_ERROR;
|
|
}
|
|
|
|
return HCI_OK;
|
|
}
|
|
|
|
hci_result_t hci_reset(void) {
|
|
return send_command(BT_HCI_OP_RESET, 0, NULL);
|
|
}
|
|
|
|
hci_result_t hci_read_local_version(uint8_t *hci_version, uint16_t *hci_revision, uint8_t *lmp_version, uint16_t *manufacturer, uint16_t *lmp_subversion) {
|
|
hci_result_t result = send_command(BT_HCI_OP_READ_LOCAL_VERSION_INFO, 0, NULL);
|
|
if (result == HCI_OK) {
|
|
struct bt_hci_rp_read_local_version_info *response =
|
|
(struct bt_hci_rp_read_local_version_info *) cmd_response_data;
|
|
*hci_version = response->hci_version;
|
|
*hci_revision = response->hci_revision;
|
|
*lmp_version = response->lmp_version;
|
|
*manufacturer = response->manufacturer;
|
|
*lmp_subversion = response->lmp_subversion;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
hci_result_t hci_read_bd_addr(bt_addr_t *addr) {
|
|
int result = send_command(BT_HCI_OP_READ_BD_ADDR, 0, NULL);
|
|
if (result == HCI_OK) {
|
|
struct bt_hci_rp_read_bd_addr *response = (struct bt_hci_rp_read_bd_addr *) cmd_response_data;
|
|
memcpy(addr->val, response->bdaddr.val, sizeof_field(bt_addr_t, val));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
hci_result_t hci_read_rssi(uint16_t handle, int *rssi) {
|
|
int result = send_command(BT_HCI_OP_READ_RSSI, sizeof(handle), &handle);
|
|
if (result == HCI_OK) {
|
|
struct bt_hci_rp_read_rssi *response = (struct bt_hci_rp_read_rssi *) cmd_response_data;
|
|
if (response->handle != handle) {
|
|
// Handle doesn't match.
|
|
return HCI_NO_RESPONSE;
|
|
}
|
|
|
|
*rssi = response->rssi;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
hci_result_t hci_set_evt_mask(uint64_t event_mask) {
|
|
return send_command(BT_HCI_OP_SET_EVENT_MASK, sizeof(event_mask), &event_mask);
|
|
}
|
|
|
|
hci_result_t hci_read_le_buffer_size(uint16_t *le_max_len, uint8_t *le_max_num) {
|
|
int result = send_command(BT_HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
|
|
if (result == HCI_OK) {
|
|
struct bt_hci_rp_le_read_buffer_size *response =
|
|
(struct bt_hci_rp_le_read_buffer_size *) cmd_response_data;
|
|
*le_max_len = response->le_max_len;
|
|
*le_max_num = response->le_max_num;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
hci_result_t hci_le_set_random_address(uint8_t addr[6]) {
|
|
return send_command(BT_HCI_OP_LE_SET_RANDOM_ADDRESS, 6, addr);
|
|
}
|
|
|
|
hci_result_t hci_le_set_advertising_parameters(uint16_t min_interval, uint16_t max_interval, uint8_t type, uint8_t own_addr_type, bt_addr_le_t *direct_addr, uint8_t channel_map, uint8_t filter_policy) {
|
|
struct bt_hci_cp_le_set_adv_param params = {
|
|
.min_interval = min_interval,
|
|
.max_interval = max_interval,
|
|
.type = type,
|
|
.own_addr_type = own_addr_type,
|
|
// .direct_addr set below.
|
|
.channel_map = channel_map,
|
|
.filter_policy = filter_policy,
|
|
};
|
|
params.direct_addr.type = direct_addr->type;
|
|
memcpy(params.direct_addr.a.val, direct_addr->a.val, sizeof(params.direct_addr.a.val));
|
|
|
|
return send_command(BT_HCI_OP_LE_SET_ADV_PARAM, sizeof(params), ¶ms);
|
|
}
|
|
|
|
hci_result_t hci_le_read_maximum_advertising_data_length(int *max_adv_data_len) {
|
|
int result = send_command(BT_HCI_OP_LE_READ_MAX_ADV_DATA_LEN, 0, NULL);
|
|
if (result == HCI_OK) {
|
|
struct bt_hci_rp_le_read_max_adv_data_len *response =
|
|
(struct bt_hci_rp_le_read_max_adv_data_len *) cmd_response_data;
|
|
if (response->status == BT_HCI_ERR_SUCCESS) {
|
|
*max_adv_data_len = response->max_adv_data_len;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
hci_result_t hci_le_set_advertising_data(uint8_t len, uint8_t data[]) {
|
|
struct bt_hci_cp_le_set_adv_data params = {
|
|
// Zero out unused data bytes.
|
|
.data = { 0 },
|
|
};
|
|
|
|
params.len = len;
|
|
memcpy(params.data, data, len);
|
|
|
|
// All data bytes are sent even if some are unused.
|
|
return send_command(BT_HCI_OP_LE_SET_ADV_DATA, sizeof(params), ¶ms);
|
|
}
|
|
|
|
hci_result_t hci_le_set_scan_response_data(uint8_t len, uint8_t data[]) {
|
|
struct bt_hci_cp_le_set_scan_rsp_data params = {
|
|
// Zero out unused data bytes.
|
|
.data = { 0 },
|
|
};
|
|
params.len = len;
|
|
memcpy(params.data, data, len);
|
|
|
|
// All data bytes are sent even if some are unused.
|
|
return send_command(BT_HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(params), ¶ms);
|
|
}
|
|
|
|
hci_result_t hci_le_set_advertise_enable(uint8_t enable) {
|
|
return send_command(BT_HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
|
|
}
|
|
|
|
hci_result_t hci_le_set_scan_parameters(uint8_t scan_type, uint16_t interval, uint16_t window, uint8_t addr_type, uint8_t filter_policy) {
|
|
struct bt_hci_cp_le_set_scan_param params = {
|
|
.scan_type = scan_type,
|
|
.interval = interval,
|
|
.window = window,
|
|
.addr_type = addr_type,
|
|
.filter_policy = filter_policy,
|
|
};
|
|
|
|
return send_command(BT_HCI_OP_LE_SET_SCAN_PARAM, sizeof(params), ¶ms);
|
|
}
|
|
|
|
hci_result_t hci_le_set_scan_enable(uint8_t enable, uint8_t filter_dup) {
|
|
struct bt_hci_cp_le_set_scan_enable params = {
|
|
.enable = enable,
|
|
.filter_dup = filter_dup,
|
|
};
|
|
|
|
return send_command(BT_HCI_OP_LE_SET_SCAN_ENABLE, sizeof(params), ¶ms);
|
|
}
|
|
|
|
hci_result_t hci_le_create_conn(uint16_t scan_interval, uint16_t scan_window, uint8_t filter_policy, bt_addr_le_t *peer_addr, uint8_t own_addr_type, uint16_t conn_interval_min, uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout, uint16_t min_ce_len, uint16_t max_ce_len) {
|
|
struct bt_hci_cp_le_create_conn params = {
|
|
.scan_interval = scan_interval,
|
|
.scan_window = scan_window,
|
|
.filter_policy = filter_policy,
|
|
// .peer_addr is set below
|
|
.own_addr_type = own_addr_type,
|
|
.conn_interval_min = conn_interval_min,
|
|
.conn_interval_max = conn_interval_max,
|
|
.conn_latency = conn_latency,
|
|
.supervision_timeout = supervision_timeout,
|
|
.min_ce_len = min_ce_len,
|
|
.max_ce_len = max_ce_len,
|
|
};
|
|
params.peer_addr.type = peer_addr->type;
|
|
memcpy(params.peer_addr.a.val, peer_addr->a.val, sizeof(params.peer_addr.a.val));
|
|
|
|
return send_command(BT_HCI_OP_LE_CREATE_CONN, sizeof(params), ¶ms);
|
|
}
|
|
|
|
hci_result_t hci_le_cancel_conn(void) {
|
|
return send_command(BT_HCI_OP_CONNECT_CANCEL, 0, NULL);
|
|
}
|
|
|
|
hci_result_t hci_le_conn_update(uint16_t handle, uint16_t conn_interval_min, uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout) {
|
|
struct hci_cp_le_conn_update params = {
|
|
.handle = handle,
|
|
.conn_interval_min = conn_interval_min,
|
|
.conn_interval_max = conn_interval_max,
|
|
.conn_latency = conn_latency,
|
|
.supervision_timeout = supervision_timeout,
|
|
.min_ce_len = 4,
|
|
.max_ce_len = 6,
|
|
};
|
|
|
|
return send_command(BT_HCI_OP_LE_CONN_UPDATE, sizeof(params), ¶ms);
|
|
}
|
|
|
|
hci_result_t hci_disconnect(uint16_t handle) {
|
|
struct bt_hci_cp_disconnect params = {
|
|
.handle = handle,
|
|
.reason = BT_HCI_ERR_REMOTE_USER_TERM_CONN,
|
|
};
|
|
|
|
return send_command(BT_HCI_OP_DISCONNECT, sizeof(params), ¶ms);
|
|
}
|