8f20cdc353
For time-based functions that work with absolute time there is the need for an Epoch, to set the zero-point at which the absolute time starts counting. Such functions include time.time() and filesystem stat return values. And different ports may use a different Epoch. To make it clearer what functions use the Epoch (whatever it may be), and make the ports more consistent with their use of the Epoch, this commit renames all Epoch related functions to include the word "epoch" in their name (and remove references to "2000"). Along with this rename, the following things have changed: - mp_hal_time_ns() is now specified to return the number of nanoseconds since the Epoch, rather than since 1970 (but since this is an internal function it doesn't change anything for the user). - littlefs timestamps on the esp8266 have been fixed (they were previously off by 30 years in nanoseconds). Otherwise, there is no functional change made by this commit. Signed-off-by: Damien George <damien@micropython.org>
271 lines
9.3 KiB
C
271 lines
9.3 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015 Josef Gajdusek
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "py/runtime.h"
|
|
#include "lib/timeutils/timeutils.h"
|
|
#include "user_interface.h"
|
|
#include "modmachine.h"
|
|
|
|
typedef struct _pyb_rtc_obj_t {
|
|
mp_obj_base_t base;
|
|
} pyb_rtc_obj_t;
|
|
|
|
#define MEM_MAGIC 0x75507921
|
|
#define MEM_DELTA_ADDR 64
|
|
#define MEM_CAL_ADDR (MEM_DELTA_ADDR + 2)
|
|
#define MEM_USER_MAGIC_ADDR (MEM_CAL_ADDR + 1)
|
|
#define MEM_USER_LEN_ADDR (MEM_USER_MAGIC_ADDR + 1)
|
|
#define MEM_USER_DATA_ADDR (MEM_USER_LEN_ADDR + 1)
|
|
#define MEM_USER_MAXLEN (512 - (MEM_USER_DATA_ADDR - MEM_DELTA_ADDR) * 4)
|
|
|
|
// singleton RTC object
|
|
STATIC const pyb_rtc_obj_t pyb_rtc_obj = {{&pyb_rtc_type}};
|
|
|
|
// ALARM0 state
|
|
uint32_t pyb_rtc_alarm0_wake; // see MACHINE_WAKE_xxx constants
|
|
uint64_t pyb_rtc_alarm0_expiry; // in microseconds
|
|
|
|
// RTC overflow checking
|
|
STATIC uint32_t rtc_last_ticks;
|
|
|
|
void mp_hal_rtc_init(void) {
|
|
uint32_t magic;
|
|
|
|
system_rtc_mem_read(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic));
|
|
if (magic != MEM_MAGIC) {
|
|
magic = MEM_MAGIC;
|
|
system_rtc_mem_write(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic));
|
|
uint32_t cal = system_rtc_clock_cali_proc();
|
|
int64_t delta = 0;
|
|
system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal));
|
|
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
|
|
uint32_t len = 0;
|
|
system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len));
|
|
}
|
|
// system_get_rtc_time() is always 0 after reset/deepsleep
|
|
rtc_last_ticks = system_get_rtc_time();
|
|
|
|
// reset ALARM0 state
|
|
pyb_rtc_alarm0_wake = 0;
|
|
pyb_rtc_alarm0_expiry = 0;
|
|
}
|
|
|
|
STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
// check arguments
|
|
mp_arg_check_num(n_args, n_kw, 0, 0, false);
|
|
|
|
// return constant object
|
|
return (mp_obj_t)&pyb_rtc_obj;
|
|
}
|
|
|
|
void pyb_rtc_set_us_since_epoch(uint64_t nowus) {
|
|
uint32_t cal = system_rtc_clock_cali_proc();
|
|
// Save RTC ticks for overflow detection.
|
|
rtc_last_ticks = system_get_rtc_time();
|
|
int64_t delta = nowus - (((uint64_t)rtc_last_ticks * cal) >> 12);
|
|
|
|
// As the calibration value jitters quite a bit, to make the
|
|
// clock at least somewhat practically usable, we need to store it
|
|
system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal));
|
|
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
|
|
};
|
|
|
|
uint64_t pyb_rtc_get_us_since_epoch() {
|
|
uint32_t cal;
|
|
int64_t delta;
|
|
uint32_t rtc_ticks;
|
|
|
|
system_rtc_mem_read(MEM_CAL_ADDR, &cal, sizeof(cal));
|
|
system_rtc_mem_read(MEM_DELTA_ADDR, &delta, sizeof(delta));
|
|
|
|
// ESP-SDK system_get_rtc_time() only returns uint32 and therefore
|
|
// overflow about every 7:45h. Thus, we have to check for
|
|
// overflow and handle it.
|
|
rtc_ticks = system_get_rtc_time();
|
|
if (rtc_ticks < rtc_last_ticks) {
|
|
// Adjust delta because of RTC overflow.
|
|
delta += (uint64_t)cal << 20;
|
|
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
|
|
}
|
|
rtc_last_ticks = rtc_ticks;
|
|
|
|
return (((uint64_t)rtc_ticks * cal) >> 12) + delta;
|
|
};
|
|
|
|
void rtc_prepare_deepsleep(uint64_t sleep_us) {
|
|
// RTC time will reset at wake up. Let's be preared for this.
|
|
int64_t delta = pyb_rtc_get_us_since_epoch() + sleep_us;
|
|
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
|
|
}
|
|
|
|
STATIC mp_obj_t pyb_rtc_datetime(size_t n_args, const mp_obj_t *args) {
|
|
if (n_args == 1) {
|
|
// Get time
|
|
uint64_t msecs = pyb_rtc_get_us_since_epoch() / 1000;
|
|
|
|
timeutils_struct_time_t tm;
|
|
timeutils_seconds_since_epoch_to_struct_time(msecs / 1000, &tm);
|
|
|
|
mp_obj_t tuple[8] = {
|
|
mp_obj_new_int(tm.tm_year),
|
|
mp_obj_new_int(tm.tm_mon),
|
|
mp_obj_new_int(tm.tm_mday),
|
|
mp_obj_new_int(tm.tm_wday),
|
|
mp_obj_new_int(tm.tm_hour),
|
|
mp_obj_new_int(tm.tm_min),
|
|
mp_obj_new_int(tm.tm_sec),
|
|
mp_obj_new_int(msecs % 1000)
|
|
};
|
|
|
|
return mp_obj_new_tuple(8, tuple);
|
|
} else {
|
|
// Set time
|
|
mp_obj_t *items;
|
|
mp_obj_get_array_fixed_n(args[1], 8, &items);
|
|
|
|
pyb_rtc_set_us_since_epoch(
|
|
((uint64_t)timeutils_seconds_since_epoch(
|
|
mp_obj_get_int(items[0]),
|
|
mp_obj_get_int(items[1]),
|
|
mp_obj_get_int(items[2]),
|
|
mp_obj_get_int(items[4]),
|
|
mp_obj_get_int(items[5]),
|
|
mp_obj_get_int(items[6])) * 1000 + mp_obj_get_int(items[7])) * 1000);
|
|
|
|
return mp_const_none;
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_datetime_obj, 1, 2, pyb_rtc_datetime);
|
|
|
|
STATIC mp_obj_t pyb_rtc_memory(size_t n_args, const mp_obj_t *args) {
|
|
uint8_t rtcram[MEM_USER_MAXLEN];
|
|
uint32_t len;
|
|
|
|
if (n_args == 1) {
|
|
// read RTC memory
|
|
|
|
system_rtc_mem_read(MEM_USER_LEN_ADDR, &len, sizeof(len));
|
|
system_rtc_mem_read(MEM_USER_DATA_ADDR, rtcram, (len + 3) & ~3);
|
|
|
|
return mp_obj_new_bytes(rtcram, len);
|
|
} else {
|
|
// write RTC memory
|
|
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);
|
|
|
|
if (bufinfo.len > MEM_USER_MAXLEN) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("buffer too long"));
|
|
}
|
|
|
|
len = bufinfo.len;
|
|
system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len));
|
|
|
|
int i = 0;
|
|
for (; i < bufinfo.len; i++) {
|
|
rtcram[i] = ((uint8_t *)bufinfo.buf)[i];
|
|
}
|
|
|
|
system_rtc_mem_write(MEM_USER_DATA_ADDR, rtcram, (len + 3) & ~3);
|
|
|
|
return mp_const_none;
|
|
}
|
|
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_memory_obj, 1, 2, pyb_rtc_memory);
|
|
|
|
STATIC mp_obj_t pyb_rtc_alarm(mp_obj_t self_in, mp_obj_t alarm_id, mp_obj_t time_in) {
|
|
(void)self_in; // unused
|
|
|
|
// check we want alarm0
|
|
if (mp_obj_get_int(alarm_id) != 0) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid alarm"));
|
|
}
|
|
|
|
// set expiry time (in microseconds)
|
|
pyb_rtc_alarm0_expiry = pyb_rtc_get_us_since_epoch() + (uint64_t)mp_obj_get_int(time_in) * 1000;
|
|
|
|
return mp_const_none;
|
|
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_rtc_alarm_obj, pyb_rtc_alarm);
|
|
|
|
STATIC mp_obj_t pyb_rtc_alarm_left(size_t n_args, const mp_obj_t *args) {
|
|
// check we want alarm0
|
|
if (n_args > 1 && mp_obj_get_int(args[1]) != 0) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid alarm"));
|
|
}
|
|
|
|
uint64_t now = pyb_rtc_get_us_since_epoch();
|
|
if (pyb_rtc_alarm0_expiry <= now) {
|
|
return MP_OBJ_NEW_SMALL_INT(0);
|
|
} else {
|
|
return mp_obj_new_int((pyb_rtc_alarm0_expiry - now) / 1000);
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_left_obj, 1, 2, pyb_rtc_alarm_left);
|
|
|
|
STATIC mp_obj_t pyb_rtc_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_trigger, ARG_wake };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_trigger, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_wake, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
};
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
// check we want alarm0
|
|
if (args[ARG_trigger].u_int != 0) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid alarm"));
|
|
}
|
|
|
|
// set the wake value
|
|
pyb_rtc_alarm0_wake = args[ARG_wake].u_int;
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_irq_obj, 1, pyb_rtc_irq);
|
|
|
|
STATIC const mp_rom_map_elem_t pyb_rtc_locals_dict_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR_datetime), MP_ROM_PTR(&pyb_rtc_datetime_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_memory), MP_ROM_PTR(&pyb_rtc_memory_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_alarm), MP_ROM_PTR(&pyb_rtc_alarm_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_alarm_left), MP_ROM_PTR(&pyb_rtc_alarm_left_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&pyb_rtc_irq_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ALARM0), MP_ROM_INT(0) },
|
|
};
|
|
STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table);
|
|
|
|
const mp_obj_type_t pyb_rtc_type = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_RTC,
|
|
.make_new = pyb_rtc_make_new,
|
|
.locals_dict = (mp_obj_dict_t *)&pyb_rtc_locals_dict,
|
|
};
|