circuitpython/stmhal/sdcard.c
Damien George 9b196cddab Remove mp_obj_type_t.methods entry and use .locals_dict instead.
Originally, .methods was used for methods in a ROM class, and
locals_dict for methods in a user-created class.  That distinction is
unnecessary, and we can use locals_dict for ROM classes now that we have
ROMable maps.

This removes an entry in the bloated mp_obj_type_t struct, saving a word
for each ROM object and each RAM object.  ROM objects that have a
methods table (now a locals_dict) need an extra word in total (removed
the methods pointer (1 word), no longer need the sentinel (2 words), but
now need an mp_obj_dict_t wrapper (4 words)).  But RAM objects save a
word because they never used the methods entry.

Overall the ROM usage is down by a few hundred bytes, and RAM usage is
down 1 word per user-defined type/class.

There is less code (no need to check 2 tables), and now consistent with
the way ROM modules have their tables initialised.

Efficiency is very close to equivaluent.
2014-03-26 21:47:19 +00:00

251 lines
7.1 KiB
C

// TODO make it work with DMA
#include <stm32f4xx_hal.h>
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "map.h"
#include "runtime.h"
#include "sdcard.h"
static SD_HandleTypeDef sd_handle;
#define SDCARD_DETECT_GPIO_PORT (GPIOA)
#define SDCARD_DETECT_GPIO_PIN (GPIO_PIN_8)
#define SDCARD_DETECT_GPIO_PULL (GPIO_PULLUP)
#define SDCARD_DETECT_GPIO_PRESENT (GPIO_PIN_RESET)
#define __SDCARD_DETECT_GPIO_CLK_ENABLE() __GPIOA_CLK_ENABLE()
void sdcard_init(void) {
GPIO_InitTypeDef GPIO_Init_Structure;
// invalidate the sd_handle
sd_handle.Instance = NULL;
// configure SD GPIO
// we do this here an not in HAL_SD_MspInit because it apparently
// makes it more robust to have the pins always pulled high
GPIO_Init_Structure.Mode = GPIO_MODE_AF_PP;
GPIO_Init_Structure.Pull = GPIO_PULLUP;
GPIO_Init_Structure.Speed = GPIO_SPEED_HIGH;
GPIO_Init_Structure.Alternate = GPIO_AF12_SDIO;
GPIO_Init_Structure.Pin = GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12;
HAL_GPIO_Init(GPIOC, &GPIO_Init_Structure);
GPIO_Init_Structure.Pin = GPIO_PIN_2;
HAL_GPIO_Init(GPIOD, &GPIO_Init_Structure);
// configure the SD card detect pin
// we do this here so we can detect if the SD card is inserted before powering it on
GPIO_Init_Structure.Mode = GPIO_MODE_INPUT;
GPIO_Init_Structure.Pull = SDCARD_DETECT_GPIO_PULL;
GPIO_Init_Structure.Speed = GPIO_SPEED_HIGH;
GPIO_Init_Structure.Pin = SDCARD_DETECT_GPIO_PIN;
HAL_GPIO_Init(SDCARD_DETECT_GPIO_PORT, &GPIO_Init_Structure);
}
void HAL_SD_MspInit(SD_HandleTypeDef *hsd) {
// enable SDIO clock
__SDIO_CLK_ENABLE();
// GPIO have already been initialised by sdcard_init
// interrupts are not used at the moment
// they are needed only for DMA transfer (I think...)
}
void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) {
__SDIO_CLK_DISABLE();
}
bool sdcard_is_present(void) {
return HAL_GPIO_ReadPin(SDCARD_DETECT_GPIO_PORT, SDCARD_DETECT_GPIO_PIN) == SDCARD_DETECT_GPIO_PRESENT;
}
bool sdcard_power_on(void) {
if (!sdcard_is_present()) {
return false;
}
// SD device interface configuration
sd_handle.Instance = SDIO;
sd_handle.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
sd_handle.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
sd_handle.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE;
sd_handle.Init.BusWide = SDIO_BUS_WIDE_1B;
sd_handle.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
sd_handle.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV;
// init the SD interface
HAL_SD_CardInfoTypedef cardinfo;
if (HAL_SD_Init(&sd_handle, &cardinfo) != SD_OK) {
goto error;
}
// configure the SD bus width for wide operation
if (HAL_SD_WideBusOperation_Config(&sd_handle, SDIO_BUS_WIDE_4B) != SD_OK) {
HAL_SD_DeInit(&sd_handle);
goto error;
}
return true;
error:
sd_handle.Instance = NULL;
return false;
}
void sdcard_power_off(void) {
HAL_SD_DeInit(&sd_handle);
sd_handle.Instance = NULL;
}
uint64_t sdcard_get_capacity_in_bytes(void) {
if (sd_handle.Instance == NULL) {
return 0;
}
HAL_SD_CardInfoTypedef cardinfo;
HAL_SD_Get_CardInfo(&sd_handle, &cardinfo);
return cardinfo.CardCapacity;
}
bool sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
// check that dest pointer is aligned on a 4-byte boundary
if (((uint32_t)dest & 3) != 0) {
return false;
}
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return false;
}
if (HAL_SD_ReadBlocks(&sd_handle, (uint32_t*)dest, block_num * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE, num_blocks) != SD_OK) {
return false;
}
return true;
}
bool sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
// check that src pointer is aligned on a 4-byte boundary
if (((uint32_t)src & 3) != 0) {
return false;
}
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return false;
}
if (HAL_SD_WriteBlocks(&sd_handle, (uint32_t*)src, block_num * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE, num_blocks) != SD_OK) {
return false;
}
return true;
}
#if 0
DMA not implemented
bool sdcard_read_blocks_dma(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
// check that dest pointer is aligned on a 4-byte boundary
if (((uint32_t)dest & 3) != 0) {
return false;
}
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return false;
}
// do the read
if (HAL_SD_ReadBlocks_DMA(&sd_handle, (uint32_t*)dest, block_num * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE) != SD_OK) {
return false;
}
// wait for DMA transfer to finish, with a large timeout
if (HAL_SD_CheckReadOperation(&sd_handle, 100000000) != SD_OK) {
return false;
}
return true;
}
bool sdcard_write_blocks_dma(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
// check that src pointer is aligned on a 4-byte boundary
if (((uint32_t)src & 3) != 0) {
return false;
}
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return false;
}
SD_Error status;
status = HAL_SD_WriteBlock_DMA(&sd_handle, (uint32_t*)src, block_num * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE, num_blocks);
if (status != SD_OK) {
return false;
}
// wait for DMA transfer to finish, with a large timeout
status = HAL_SD_CheckWriteOperation(&sd_handle, 100000000);
if (status != SD_OK) {
return false;
}
return true;
}
#endif
/******************************************************************************/
// Micro Python bindings
static mp_obj_t sd_present(mp_obj_t self) {
return MP_BOOL(sdcard_is_present());
}
static MP_DEFINE_CONST_FUN_OBJ_1(sd_present_obj, sd_present);
static mp_obj_t sd_power(mp_obj_t self, mp_obj_t state) {
bool result;
if (rt_is_true(state)) {
result = sdcard_power_on();
} else {
sdcard_power_off();
result = true;
}
return MP_BOOL(result);
}
static MP_DEFINE_CONST_FUN_OBJ_2(sd_power_obj, sd_power);
static mp_obj_t sd_read(mp_obj_t self, mp_obj_t block_num) {
uint8_t *dest = m_new(uint8_t, SDCARD_BLOCK_SIZE);
if (!sdcard_read_blocks(dest, mp_obj_get_int(block_num), 1)) {
m_free(dest, SDCARD_BLOCK_SIZE);
return mp_const_none;
}
return mp_obj_new_bytearray_by_ref(SDCARD_BLOCK_SIZE, dest);
}
static MP_DEFINE_CONST_FUN_OBJ_2(sd_read_obj, sd_read);
STATIC const mp_map_elem_t sdcard_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_present), (mp_obj_t)&sd_present_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_power), (mp_obj_t)&sd_power_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&sd_read_obj },
};
STATIC MP_DEFINE_CONST_DICT(sdcard_locals_dict, sdcard_locals_dict_table);
static const mp_obj_type_t sdcard_type = {
{ &mp_type_type },
.name = MP_QSTR_SDcard,
.locals_dict = (mp_obj_t)&sdcard_locals_dict,
};
const mp_obj_base_t pyb_sdcard_obj = {&sdcard_type};