circuitpython/stm/usart.c
Damien George 9b196cddab Remove mp_obj_type_t.methods entry and use .locals_dict instead.
Originally, .methods was used for methods in a ROM class, and
locals_dict for methods in a user-created class.  That distinction is
unnecessary, and we can use locals_dict for ROM classes now that we have
ROMable maps.

This removes an entry in the bloated mp_obj_type_t struct, saving a word
for each ROM object and each RAM object.  ROM objects that have a
methods table (now a locals_dict) need an extra word in total (removed
the methods pointer (1 word), no longer need the sentinel (2 words), but
now need an mp_obj_dict_t wrapper (4 words)).  But RAM objects save a
word because they never used the methods entry.

Overall the ROM usage is down by a few hundred bytes, and RAM usage is
down 1 word per user-defined type/class.

There is less code (no need to check 2 tables), and now consistent with
the way ROM modules have their tables initialised.

Efficiency is very close to equivaluent.
2014-03-26 21:47:19 +00:00

271 lines
8.1 KiB
C

#include <stdio.h>
#include <stm32f4xx_rcc.h>
#include <stm32f4xx_gpio.h>
#include <stm32f4xx_usart.h>
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "map.h"
#include "usart.h"
pyb_usart_t pyb_usart_global_debug = PYB_USART_NONE;
static USART_TypeDef *usart_get_base(pyb_usart_t usart_id) {
USART_TypeDef *USARTx=NULL;
switch (usart_id) {
case PYB_USART_NONE:
break;
case PYB_USART_1:
USARTx = USART1;
break;
case PYB_USART_2:
USARTx = USART2;
break;
case PYB_USART_3:
USARTx = USART3;
break;
case PYB_USART_6:
USARTx = USART6;
break;
}
return USARTx;
}
void usart_init(pyb_usart_t usart_id, uint32_t baudrate) {
USART_TypeDef *USARTx=NULL;
uint32_t GPIO_Pin=0;
uint8_t GPIO_AF_USARTx=0;
GPIO_TypeDef* GPIO_Port=NULL;
uint16_t GPIO_PinSource_TX=0;
uint16_t GPIO_PinSource_RX=0;
uint32_t RCC_APBxPeriph=0;
void (*RCC_APBxPeriphClockCmd)(uint32_t, FunctionalState)=NULL;
switch (usart_id) {
case PYB_USART_NONE:
return;
case PYB_USART_1:
USARTx = USART1;
GPIO_Port = GPIOA;
GPIO_AF_USARTx = GPIO_AF_USART1;
GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10;
GPIO_PinSource_TX = GPIO_PinSource9;
GPIO_PinSource_RX = GPIO_PinSource10;
RCC_APBxPeriph = RCC_APB2Periph_USART1;
RCC_APBxPeriphClockCmd =RCC_APB2PeriphClockCmd;
break;
case PYB_USART_2:
USARTx = USART2;
GPIO_Port = GPIOD;
GPIO_AF_USARTx = GPIO_AF_USART2;
GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6;
GPIO_PinSource_TX = GPIO_PinSource5;
GPIO_PinSource_RX = GPIO_PinSource6;
RCC_APBxPeriph = RCC_APB1Periph_USART2;
RCC_APBxPeriphClockCmd =RCC_APB1PeriphClockCmd;
break;
case PYB_USART_3:
USARTx = USART3;
#if defined(PYBOARD3) || defined(PYBOARD4)
GPIO_Port = GPIOB;
GPIO_AF_USARTx = GPIO_AF_USART3;
GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;
GPIO_PinSource_TX = GPIO_PinSource10;
GPIO_PinSource_RX = GPIO_PinSource11;
#else
GPIO_Port = GPIOD;
GPIO_AF_USARTx = GPIO_AF_USART3;
GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9;
GPIO_PinSource_TX = GPIO_PinSource8;
GPIO_PinSource_RX = GPIO_PinSource9;
#endif
RCC_APBxPeriph = RCC_APB1Periph_USART3;
RCC_APBxPeriphClockCmd =RCC_APB1PeriphClockCmd;
break;
case PYB_USART_6:
USARTx = USART6;
GPIO_Port = GPIOC;
GPIO_AF_USARTx = GPIO_AF_USART6;
GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
GPIO_PinSource_TX = GPIO_PinSource6;
GPIO_PinSource_RX = GPIO_PinSource7;
RCC_APBxPeriph = RCC_APB2Periph_USART6;
RCC_APBxPeriphClockCmd =RCC_APB2PeriphClockCmd;
break;
}
/* Initialize USARTx */
RCC_APBxPeriphClockCmd(RCC_APBxPeriph, ENABLE);
GPIO_PinAFConfig(GPIO_Port, GPIO_PinSource_TX, GPIO_AF_USARTx);
GPIO_PinAFConfig(GPIO_Port, GPIO_PinSource_RX, GPIO_AF_USARTx);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIO_Port, &GPIO_InitStructure);
USART_InitTypeDef USART_InitStructure;
USART_InitStructure.USART_BaudRate = baudrate;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USARTx, &USART_InitStructure);
USART_Cmd(USARTx, ENABLE);
}
bool usart_rx_any(pyb_usart_t usart_id) {
USART_TypeDef *USARTx = usart_get_base(usart_id);
return USART_GetFlagStatus(USARTx, USART_FLAG_RXNE) == SET;
}
int usart_rx_char(pyb_usart_t usart_id) {
USART_TypeDef *USARTx = usart_get_base(usart_id);
return USART_ReceiveData(USARTx);
}
void usart_tx_char(pyb_usart_t usart_id, int c) {
USART_TypeDef *USARTx = usart_get_base(usart_id);
// wait until the end of any previous transmission
uint32_t timeout = 100000;
while (USART_GetFlagStatus(USARTx, USART_FLAG_TC) == RESET && --timeout > 0) {
}
USART_SendData(USARTx, c);
}
void usart_tx_str(pyb_usart_t usart_id, const char *str) {
for (; *str; str++) {
usart_tx_char(usart_id, *str);
}
}
void usart_tx_bytes(pyb_usart_t usart_id, const char *data, uint len) {
for (; len > 0; data++, len--) {
usart_tx_char(usart_id, *data);
}
}
void usart_tx_strn_cooked(pyb_usart_t usart_id, const char *str, int len) {
for (const char *top = str + len; str < top; str++) {
if (*str == '\n') {
usart_tx_char(usart_id, '\r');
}
usart_tx_char(usart_id, *str);
}
}
/******************************************************************************/
/* Micro Python bindings */
typedef struct _pyb_usart_obj_t {
mp_obj_base_t base;
pyb_usart_t usart_id;
bool is_enabled;
} pyb_usart_obj_t;
static mp_obj_t usart_obj_status(mp_obj_t self_in) {
pyb_usart_obj_t *self = self_in;
if (usart_rx_any(self->usart_id)) {
return mp_const_true;
} else {
return mp_const_false;
}
}
static mp_obj_t usart_obj_rx_char(mp_obj_t self_in) {
mp_obj_t ret = mp_const_none;
pyb_usart_obj_t *self = self_in;
if (self->is_enabled) {
ret = mp_obj_new_int(usart_rx_char(self->usart_id));
}
return ret;
}
static mp_obj_t usart_obj_tx_char(mp_obj_t self_in, mp_obj_t c) {
pyb_usart_obj_t *self = self_in;
uint len;
const char *str = mp_obj_str_get_data(c, &len);
if (len == 1 && self->is_enabled) {
usart_tx_char(self->usart_id, str[0]);
}
return mp_const_none;
}
static mp_obj_t usart_obj_tx_str(mp_obj_t self_in, mp_obj_t s) {
pyb_usart_obj_t *self = self_in;
if (self->is_enabled) {
if (MP_OBJ_IS_STR(s)) {
uint len;
const char *data = mp_obj_str_get_data(s, &len);
usart_tx_bytes(self->usart_id, data, len);
}
}
return mp_const_none;
}
static void usart_obj_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_usart_obj_t *self = self_in;
print(env, "<Usart %lu>", self->usart_id);
}
static MP_DEFINE_CONST_FUN_OBJ_1(usart_obj_status_obj, usart_obj_status);
static MP_DEFINE_CONST_FUN_OBJ_1(usart_obj_rx_char_obj, usart_obj_rx_char);
static MP_DEFINE_CONST_FUN_OBJ_2(usart_obj_tx_char_obj, usart_obj_tx_char);
static MP_DEFINE_CONST_FUN_OBJ_2(usart_obj_tx_str_obj, usart_obj_tx_str);
STATIC const mp_map_elem_t usart_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_status), (mp_obj_t)&usart_obj_status_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_recv_chr), (mp_obj_t)&usart_obj_rx_char_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_send_chr), (mp_obj_t)&usart_obj_tx_char_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&usart_obj_tx_str_obj },
};
STATIC MP_DEFINE_CONST_DICT(usart_locals_dict, usart_locals_dict_table);
STATIC const mp_obj_type_t usart_obj_type = {
{ &mp_type_type },
.name = MP_QSTR_Usart,
.print = usart_obj_print,
.locals_dict = (mp_obj_t)&usart_locals_dict,
};
STATIC mp_obj_t pyb_Usart(mp_obj_t usart_id, mp_obj_t baudrate) {
if (mp_obj_get_int(usart_id)>PYB_USART_MAX) {
return mp_const_none;
}
/* init USART */
usart_init(mp_obj_get_int(usart_id), mp_obj_get_int(baudrate));
pyb_usart_obj_t *o = m_new_obj(pyb_usart_obj_t);
o->base.type = &usart_obj_type;
o->usart_id = mp_obj_get_int(usart_id);
o->is_enabled = true;
return o;
}
MP_DEFINE_CONST_FUN_OBJ_2(pyb_Usart_obj, pyb_Usart);