88c26a48b4
When disabled, the pyb.I2C class saves around 8k of code space and 172 bytes of RAM. The same functionality is now available in machine.I2C (for F4 and F7 MCUs). It is still enabled by default.
742 lines
22 KiB
C
742 lines
22 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013-2018 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "py/runtime.h"
|
|
#include "py/stackctrl.h"
|
|
#include "py/gc.h"
|
|
#include "py/mphal.h"
|
|
#include "lib/mp-readline/readline.h"
|
|
#include "lib/utils/pyexec.h"
|
|
#include "lib/oofatfs/ff.h"
|
|
#include "extmod/vfs.h"
|
|
#include "extmod/vfs_fat.h"
|
|
|
|
#include "systick.h"
|
|
#include "pendsv.h"
|
|
#include "pybthread.h"
|
|
#include "gccollect.h"
|
|
#include "modmachine.h"
|
|
#include "i2c.h"
|
|
#include "spi.h"
|
|
#include "uart.h"
|
|
#include "timer.h"
|
|
#include "led.h"
|
|
#include "pin.h"
|
|
#include "extint.h"
|
|
#include "usrsw.h"
|
|
#include "usb.h"
|
|
#include "rtc.h"
|
|
#include "storage.h"
|
|
#include "sdcard.h"
|
|
#include "rng.h"
|
|
#include "accel.h"
|
|
#include "servo.h"
|
|
#include "dac.h"
|
|
#include "can.h"
|
|
#include "modnetwork.h"
|
|
|
|
void SystemClock_Config(void);
|
|
|
|
pyb_thread_t pyb_thread_main;
|
|
fs_user_mount_t fs_user_mount_flash;
|
|
|
|
void flash_error(int n) {
|
|
for (int i = 0; i < n; i++) {
|
|
led_state(PYB_LED_RED, 1);
|
|
led_state(PYB_LED_GREEN, 0);
|
|
mp_hal_delay_ms(250);
|
|
led_state(PYB_LED_RED, 0);
|
|
led_state(PYB_LED_GREEN, 1);
|
|
mp_hal_delay_ms(250);
|
|
}
|
|
led_state(PYB_LED_GREEN, 0);
|
|
}
|
|
|
|
void NORETURN __fatal_error(const char *msg) {
|
|
for (volatile uint delay = 0; delay < 10000000; delay++) {
|
|
}
|
|
led_state(1, 1);
|
|
led_state(2, 1);
|
|
led_state(3, 1);
|
|
led_state(4, 1);
|
|
mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14);
|
|
mp_hal_stdout_tx_strn(msg, strlen(msg));
|
|
for (uint i = 0;;) {
|
|
led_toggle(((i++) & 3) + 1);
|
|
for (volatile uint delay = 0; delay < 10000000; delay++) {
|
|
}
|
|
if (i >= 16) {
|
|
// to conserve power
|
|
__WFI();
|
|
}
|
|
}
|
|
}
|
|
|
|
void nlr_jump_fail(void *val) {
|
|
printf("FATAL: uncaught exception %p\n", val);
|
|
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)val);
|
|
__fatal_error("");
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
|
|
(void)func;
|
|
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
|
|
__fatal_error("");
|
|
}
|
|
#endif
|
|
|
|
STATIC mp_obj_t pyb_main(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_opt, MP_ARG_INT, {.u_int = 0} }
|
|
};
|
|
|
|
if (MP_OBJ_IS_STR(pos_args[0])) {
|
|
MP_STATE_PORT(pyb_config_main) = pos_args[0];
|
|
|
|
// parse args
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
MP_STATE_VM(mp_optimise_value) = args[0].u_int;
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_main_obj, 1, pyb_main);
|
|
|
|
static const char fresh_boot_py[] =
|
|
"# boot.py -- run on boot-up\r\n"
|
|
"# can run arbitrary Python, but best to keep it minimal\r\n"
|
|
"\r\n"
|
|
"import machine\r\n"
|
|
"import pyb\r\n"
|
|
"#pyb.main('main.py') # main script to run after this one\r\n"
|
|
#if MICROPY_HW_ENABLE_USB
|
|
"#pyb.usb_mode('VCP+MSC') # act as a serial and a storage device\r\n"
|
|
"#pyb.usb_mode('VCP+HID') # act as a serial device and a mouse\r\n"
|
|
#endif
|
|
;
|
|
|
|
static const char fresh_main_py[] =
|
|
"# main.py -- put your code here!\r\n"
|
|
;
|
|
|
|
static const char fresh_pybcdc_inf[] =
|
|
#include "genhdr/pybcdc_inf.h"
|
|
;
|
|
|
|
static const char fresh_readme_txt[] =
|
|
"This is a MicroPython board\r\n"
|
|
"\r\n"
|
|
"You can get started right away by writing your Python code in 'main.py'.\r\n"
|
|
"\r\n"
|
|
"For a serial prompt:\r\n"
|
|
" - Windows: you need to go to 'Device manager', right click on the unknown device,\r\n"
|
|
" then update the driver software, using the 'pybcdc.inf' file found on this drive.\r\n"
|
|
" Then use a terminal program like Hyperterminal or putty.\r\n"
|
|
" - Mac OS X: use the command: screen /dev/tty.usbmodem*\r\n"
|
|
" - Linux: use the command: screen /dev/ttyACM0\r\n"
|
|
"\r\n"
|
|
"Please visit http://micropython.org/help/ for further help.\r\n"
|
|
;
|
|
|
|
// avoid inlining to avoid stack usage within main()
|
|
MP_NOINLINE STATIC bool init_flash_fs(uint reset_mode) {
|
|
// init the vfs object
|
|
fs_user_mount_t *vfs_fat = &fs_user_mount_flash;
|
|
vfs_fat->flags = 0;
|
|
pyb_flash_init_vfs(vfs_fat);
|
|
|
|
// try to mount the flash
|
|
FRESULT res = f_mount(&vfs_fat->fatfs);
|
|
|
|
if (reset_mode == 3 || res == FR_NO_FILESYSTEM) {
|
|
// no filesystem, or asked to reset it, so create a fresh one
|
|
|
|
// LED on to indicate creation of LFS
|
|
led_state(PYB_LED_GREEN, 1);
|
|
uint32_t start_tick = HAL_GetTick();
|
|
|
|
uint8_t working_buf[_MAX_SS];
|
|
res = f_mkfs(&vfs_fat->fatfs, FM_FAT, 0, working_buf, sizeof(working_buf));
|
|
if (res == FR_OK) {
|
|
// success creating fresh LFS
|
|
} else {
|
|
printf("PYB: can't create flash filesystem\n");
|
|
return false;
|
|
}
|
|
|
|
// set label
|
|
f_setlabel(&vfs_fat->fatfs, MICROPY_HW_FLASH_FS_LABEL);
|
|
|
|
// create empty main.py
|
|
FIL fp;
|
|
f_open(&vfs_fat->fatfs, &fp, "/main.py", FA_WRITE | FA_CREATE_ALWAYS);
|
|
UINT n;
|
|
f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
|
|
// TODO check we could write n bytes
|
|
f_close(&fp);
|
|
|
|
// create .inf driver file
|
|
f_open(&vfs_fat->fatfs, &fp, "/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS);
|
|
f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n);
|
|
f_close(&fp);
|
|
|
|
// create readme file
|
|
f_open(&vfs_fat->fatfs, &fp, "/README.txt", FA_WRITE | FA_CREATE_ALWAYS);
|
|
f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n);
|
|
f_close(&fp);
|
|
|
|
// keep LED on for at least 200ms
|
|
sys_tick_wait_at_least(start_tick, 200);
|
|
led_state(PYB_LED_GREEN, 0);
|
|
} else if (res == FR_OK) {
|
|
// mount sucessful
|
|
} else {
|
|
fail:
|
|
printf("PYB: can't mount flash\n");
|
|
return false;
|
|
}
|
|
|
|
// mount the flash device (there should be no other devices mounted at this point)
|
|
// we allocate this structure on the heap because vfs->next is a root pointer
|
|
mp_vfs_mount_t *vfs = m_new_obj_maybe(mp_vfs_mount_t);
|
|
if (vfs == NULL) {
|
|
goto fail;
|
|
}
|
|
vfs->str = "/flash";
|
|
vfs->len = 6;
|
|
vfs->obj = MP_OBJ_FROM_PTR(vfs_fat);
|
|
vfs->next = NULL;
|
|
MP_STATE_VM(vfs_mount_table) = vfs;
|
|
|
|
// The current directory is used as the boot up directory.
|
|
// It is set to the internal flash filesystem by default.
|
|
MP_STATE_PORT(vfs_cur) = vfs;
|
|
|
|
// Make sure we have a /flash/boot.py. Create it if needed.
|
|
FILINFO fno;
|
|
res = f_stat(&vfs_fat->fatfs, "/boot.py", &fno);
|
|
if (res != FR_OK) {
|
|
// doesn't exist, create fresh file
|
|
|
|
// LED on to indicate creation of boot.py
|
|
led_state(PYB_LED_GREEN, 1);
|
|
uint32_t start_tick = HAL_GetTick();
|
|
|
|
FIL fp;
|
|
f_open(&vfs_fat->fatfs, &fp, "/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
|
|
UINT n;
|
|
f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
|
|
// TODO check we could write n bytes
|
|
f_close(&fp);
|
|
|
|
// keep LED on for at least 200ms
|
|
sys_tick_wait_at_least(start_tick, 200);
|
|
led_state(PYB_LED_GREEN, 0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
STATIC bool init_sdcard_fs(void) {
|
|
bool first_part = true;
|
|
for (int part_num = 1; part_num <= 4; ++part_num) {
|
|
// create vfs object
|
|
fs_user_mount_t *vfs_fat = m_new_obj_maybe(fs_user_mount_t);
|
|
mp_vfs_mount_t *vfs = m_new_obj_maybe(mp_vfs_mount_t);
|
|
if (vfs == NULL || vfs_fat == NULL) {
|
|
break;
|
|
}
|
|
vfs_fat->flags = FSUSER_FREE_OBJ;
|
|
sdcard_init_vfs(vfs_fat, part_num);
|
|
|
|
// try to mount the partition
|
|
FRESULT res = f_mount(&vfs_fat->fatfs);
|
|
|
|
if (res != FR_OK) {
|
|
// couldn't mount
|
|
m_del_obj(fs_user_mount_t, vfs_fat);
|
|
m_del_obj(mp_vfs_mount_t, vfs);
|
|
} else {
|
|
// mounted via FatFs, now mount the SD partition in the VFS
|
|
if (first_part) {
|
|
// the first available partition is traditionally called "sd" for simplicity
|
|
vfs->str = "/sd";
|
|
vfs->len = 3;
|
|
} else {
|
|
// subsequent partitions are numbered by their index in the partition table
|
|
if (part_num == 2) {
|
|
vfs->str = "/sd2";
|
|
} else if (part_num == 2) {
|
|
vfs->str = "/sd3";
|
|
} else {
|
|
vfs->str = "/sd4";
|
|
}
|
|
vfs->len = 4;
|
|
}
|
|
vfs->obj = MP_OBJ_FROM_PTR(vfs_fat);
|
|
vfs->next = NULL;
|
|
for (mp_vfs_mount_t **m = &MP_STATE_VM(vfs_mount_table);; m = &(*m)->next) {
|
|
if (*m == NULL) {
|
|
*m = vfs;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if MICROPY_HW_ENABLE_USB
|
|
if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_NONE) {
|
|
// if no USB MSC medium is selected then use the SD card
|
|
pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_SDCARD;
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_USB
|
|
// only use SD card as current directory if that's what the USB medium is
|
|
if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_SDCARD)
|
|
#endif
|
|
{
|
|
if (first_part) {
|
|
// use SD card as current directory
|
|
MP_STATE_PORT(vfs_cur) = vfs;
|
|
}
|
|
}
|
|
first_part = false;
|
|
}
|
|
}
|
|
|
|
if (first_part) {
|
|
printf("PYB: can't mount SD card\n");
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if !MICROPY_HW_USES_BOOTLOADER
|
|
STATIC uint update_reset_mode(uint reset_mode) {
|
|
#if MICROPY_HW_HAS_SWITCH
|
|
if (switch_get()) {
|
|
|
|
// The original method used on the pyboard is appropriate if you have 2
|
|
// or more LEDs.
|
|
#if defined(MICROPY_HW_LED2)
|
|
for (uint i = 0; i < 3000; i++) {
|
|
if (!switch_get()) {
|
|
break;
|
|
}
|
|
mp_hal_delay_ms(20);
|
|
if (i % 30 == 29) {
|
|
if (++reset_mode > 3) {
|
|
reset_mode = 1;
|
|
}
|
|
led_state(2, reset_mode & 1);
|
|
led_state(3, reset_mode & 2);
|
|
led_state(4, reset_mode & 4);
|
|
}
|
|
}
|
|
// flash the selected reset mode
|
|
for (uint i = 0; i < 6; i++) {
|
|
led_state(2, 0);
|
|
led_state(3, 0);
|
|
led_state(4, 0);
|
|
mp_hal_delay_ms(50);
|
|
led_state(2, reset_mode & 1);
|
|
led_state(3, reset_mode & 2);
|
|
led_state(4, reset_mode & 4);
|
|
mp_hal_delay_ms(50);
|
|
}
|
|
mp_hal_delay_ms(400);
|
|
|
|
#elif defined(MICROPY_HW_LED1)
|
|
|
|
// For boards with only a single LED, we'll flash that LED the
|
|
// appropriate number of times, with a pause between each one
|
|
for (uint i = 0; i < 10; i++) {
|
|
led_state(1, 0);
|
|
for (uint j = 0; j < reset_mode; j++) {
|
|
if (!switch_get()) {
|
|
break;
|
|
}
|
|
led_state(1, 1);
|
|
mp_hal_delay_ms(100);
|
|
led_state(1, 0);
|
|
mp_hal_delay_ms(200);
|
|
}
|
|
mp_hal_delay_ms(400);
|
|
if (!switch_get()) {
|
|
break;
|
|
}
|
|
if (++reset_mode > 3) {
|
|
reset_mode = 1;
|
|
}
|
|
}
|
|
// Flash the selected reset mode
|
|
for (uint i = 0; i < 2; i++) {
|
|
for (uint j = 0; j < reset_mode; j++) {
|
|
led_state(1, 1);
|
|
mp_hal_delay_ms(100);
|
|
led_state(1, 0);
|
|
mp_hal_delay_ms(200);
|
|
}
|
|
mp_hal_delay_ms(400);
|
|
}
|
|
#else
|
|
#error Need a reset mode update method
|
|
#endif
|
|
}
|
|
#endif
|
|
return reset_mode;
|
|
}
|
|
#endif
|
|
|
|
void stm32_main(uint32_t reset_mode) {
|
|
// Enable caches and prefetch buffers
|
|
|
|
#if defined(STM32F4)
|
|
|
|
#if INSTRUCTION_CACHE_ENABLE
|
|
__HAL_FLASH_INSTRUCTION_CACHE_ENABLE();
|
|
#endif
|
|
#if DATA_CACHE_ENABLE
|
|
__HAL_FLASH_DATA_CACHE_ENABLE();
|
|
#endif
|
|
#if PREFETCH_ENABLE
|
|
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
|
|
#endif
|
|
|
|
#elif defined(STM32F7) || defined(STM32H7)
|
|
|
|
#if ART_ACCLERATOR_ENABLE
|
|
__HAL_FLASH_ART_ENABLE();
|
|
#endif
|
|
|
|
SCB_EnableICache();
|
|
SCB_EnableDCache();
|
|
|
|
#elif defined(STM32L4)
|
|
|
|
#if !INSTRUCTION_CACHE_ENABLE
|
|
__HAL_FLASH_INSTRUCTION_CACHE_DISABLE();
|
|
#endif
|
|
#if !DATA_CACHE_ENABLE
|
|
__HAL_FLASH_DATA_CACHE_DISABLE();
|
|
#endif
|
|
#if PREFETCH_ENABLE
|
|
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// Set the priority grouping
|
|
NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
|
|
|
|
// SysTick is needed by HAL_RCC_ClockConfig (called in SystemClock_Config)
|
|
HAL_InitTick(TICK_INT_PRIORITY);
|
|
|
|
// set the system clock to be HSE
|
|
SystemClock_Config();
|
|
|
|
// enable GPIO clocks
|
|
__HAL_RCC_GPIOA_CLK_ENABLE();
|
|
__HAL_RCC_GPIOB_CLK_ENABLE();
|
|
__HAL_RCC_GPIOC_CLK_ENABLE();
|
|
__HAL_RCC_GPIOD_CLK_ENABLE();
|
|
|
|
#if defined(STM32F4) || defined(STM32F7)
|
|
#if defined(__HAL_RCC_DTCMRAMEN_CLK_ENABLE)
|
|
// The STM32F746 doesn't really have CCM memory, but it does have DTCM,
|
|
// which behaves more or less like normal SRAM.
|
|
__HAL_RCC_DTCMRAMEN_CLK_ENABLE();
|
|
#elif defined(CCMDATARAM_BASE)
|
|
// enable the CCM RAM
|
|
__HAL_RCC_CCMDATARAMEN_CLK_ENABLE();
|
|
#endif
|
|
#elif defined(STM32H7)
|
|
// Enable D2 SRAM1/2/3 clocks.
|
|
__HAL_RCC_D2SRAM1_CLK_ENABLE();
|
|
__HAL_RCC_D2SRAM2_CLK_ENABLE();
|
|
__HAL_RCC_D2SRAM3_CLK_ENABLE();
|
|
#endif
|
|
|
|
|
|
#if defined(MICROPY_BOARD_EARLY_INIT)
|
|
MICROPY_BOARD_EARLY_INIT();
|
|
#endif
|
|
|
|
// basic sub-system init
|
|
#if MICROPY_PY_THREAD
|
|
pyb_thread_init(&pyb_thread_main);
|
|
#endif
|
|
pendsv_init();
|
|
led_init();
|
|
#if MICROPY_HW_HAS_SWITCH
|
|
switch_init0();
|
|
#endif
|
|
machine_init();
|
|
#if MICROPY_HW_ENABLE_RTC
|
|
rtc_init_start(false);
|
|
#endif
|
|
spi_init0();
|
|
#if MICROPY_PY_PYB_LEGACY && MICROPY_HW_ENABLE_HW_I2C
|
|
i2c_init0();
|
|
#endif
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
sdcard_init();
|
|
#endif
|
|
storage_init();
|
|
|
|
soft_reset:
|
|
|
|
#if defined(MICROPY_HW_LED2)
|
|
led_state(1, 0);
|
|
led_state(2, 1);
|
|
#else
|
|
led_state(1, 1);
|
|
led_state(2, 0);
|
|
#endif
|
|
led_state(3, 0);
|
|
led_state(4, 0);
|
|
|
|
#if !MICROPY_HW_USES_BOOTLOADER
|
|
// check if user switch held to select the reset mode
|
|
reset_mode = update_reset_mode(1);
|
|
#endif
|
|
|
|
// Python threading init
|
|
#if MICROPY_PY_THREAD
|
|
mp_thread_init();
|
|
#endif
|
|
|
|
// Stack limit should be less than real stack size, so we have a chance
|
|
// to recover from limit hit. (Limit is measured in bytes.)
|
|
// Note: stack control relies on main thread being initialised above
|
|
mp_stack_set_top(&_estack);
|
|
mp_stack_set_limit((char*)&_estack - (char*)&_heap_end - 1024);
|
|
|
|
// GC init
|
|
gc_init(&_heap_start, &_heap_end);
|
|
|
|
#if MICROPY_ENABLE_PYSTACK
|
|
static mp_obj_t pystack[384];
|
|
mp_pystack_init(pystack, &pystack[384]);
|
|
#endif
|
|
|
|
// MicroPython init
|
|
mp_init();
|
|
mp_obj_list_init(mp_sys_path, 0);
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
|
|
mp_obj_list_init(mp_sys_argv, 0);
|
|
|
|
// Initialise low-level sub-systems. Here we need to very basic things like
|
|
// zeroing out memory and resetting any of the sub-systems. Following this
|
|
// we can run Python scripts (eg boot.py), but anything that is configurable
|
|
// by boot.py must be set after boot.py is run.
|
|
|
|
readline_init0();
|
|
pin_init0();
|
|
extint_init0();
|
|
timer_init0();
|
|
uart_init0();
|
|
|
|
// Define MICROPY_HW_UART_REPL to be PYB_UART_6 and define
|
|
// MICROPY_HW_UART_REPL_BAUD in your mpconfigboard.h file if you want a
|
|
// REPL on a hardware UART as well as on USB VCP
|
|
#if defined(MICROPY_HW_UART_REPL)
|
|
{
|
|
mp_obj_t args[2] = {
|
|
MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL),
|
|
MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL_BAUD),
|
|
};
|
|
MP_STATE_PORT(pyb_stdio_uart) = pyb_uart_type.make_new((mp_obj_t)&pyb_uart_type, MP_ARRAY_SIZE(args), 0, args);
|
|
uart_attach_to_repl(MP_STATE_PORT(pyb_stdio_uart), true);
|
|
}
|
|
#else
|
|
MP_STATE_PORT(pyb_stdio_uart) = NULL;
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_CAN
|
|
can_init0();
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_USB
|
|
pyb_usb_init0();
|
|
#endif
|
|
|
|
// Initialise the local flash filesystem.
|
|
// Create it if needed, mount in on /flash, and set it as current dir.
|
|
bool mounted_flash = init_flash_fs(reset_mode);
|
|
|
|
bool mounted_sdcard = false;
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
// if an SD card is present then mount it on /sd/
|
|
if (sdcard_is_present()) {
|
|
// if there is a file in the flash called "SKIPSD", then we don't mount the SD card
|
|
if (!mounted_flash || f_stat(&fs_user_mount_flash.fatfs, "/SKIPSD", NULL) != FR_OK) {
|
|
mounted_sdcard = init_sdcard_fs();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_USB
|
|
// if the SD card isn't used as the USB MSC medium then use the internal flash
|
|
if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_NONE) {
|
|
pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_FLASH;
|
|
}
|
|
#endif
|
|
|
|
// set sys.path based on mounted filesystems (/sd is first so it can override /flash)
|
|
if (mounted_sdcard) {
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd));
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib));
|
|
}
|
|
if (mounted_flash) {
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash));
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib));
|
|
}
|
|
|
|
// reset config variables; they should be set by boot.py
|
|
MP_STATE_PORT(pyb_config_main) = MP_OBJ_NULL;
|
|
|
|
// run boot.py, if it exists
|
|
// TODO perhaps have pyb.reboot([bootpy]) function to soft-reboot and execute custom boot.py
|
|
if (reset_mode == 1 || reset_mode == 3) {
|
|
const char *boot_py = "boot.py";
|
|
mp_import_stat_t stat = mp_import_stat(boot_py);
|
|
if (stat == MP_IMPORT_STAT_FILE) {
|
|
int ret = pyexec_file(boot_py);
|
|
if (ret & PYEXEC_FORCED_EXIT) {
|
|
goto soft_reset_exit;
|
|
}
|
|
if (!ret) {
|
|
flash_error(4);
|
|
}
|
|
}
|
|
}
|
|
|
|
// turn boot-up LEDs off
|
|
#if !defined(MICROPY_HW_LED2)
|
|
// If there is only one LED on the board then it's used to signal boot-up
|
|
// and so we turn it off here. Otherwise LED(1) is used to indicate dirty
|
|
// flash cache and so we shouldn't change its state.
|
|
led_state(1, 0);
|
|
#endif
|
|
led_state(2, 0);
|
|
led_state(3, 0);
|
|
led_state(4, 0);
|
|
|
|
// Now we initialise sub-systems that need configuration from boot.py,
|
|
// or whose initialisation can be safely deferred until after running
|
|
// boot.py.
|
|
|
|
#if MICROPY_HW_ENABLE_USB
|
|
// init USB device to default setting if it was not already configured
|
|
if (!(pyb_usb_flags & PYB_USB_FLAG_USB_MODE_CALLED)) {
|
|
pyb_usb_dev_init(USBD_VID, USBD_PID_CDC_MSC, USBD_MODE_CDC_MSC, NULL);
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_HW_HAS_MMA7660
|
|
// MMA accel: init and reset
|
|
accel_init();
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_SERVO
|
|
// servo
|
|
servo_init();
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_DAC
|
|
// DAC
|
|
dac_init();
|
|
#endif
|
|
|
|
#if MICROPY_PY_NETWORK
|
|
mod_network_init();
|
|
#endif
|
|
|
|
// At this point everything is fully configured and initialised.
|
|
|
|
// Run the main script from the current directory.
|
|
if ((reset_mode == 1 || reset_mode == 3) && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
|
|
const char *main_py;
|
|
if (MP_STATE_PORT(pyb_config_main) == MP_OBJ_NULL) {
|
|
main_py = "main.py";
|
|
} else {
|
|
main_py = mp_obj_str_get_str(MP_STATE_PORT(pyb_config_main));
|
|
}
|
|
mp_import_stat_t stat = mp_import_stat(main_py);
|
|
if (stat == MP_IMPORT_STAT_FILE) {
|
|
int ret = pyexec_file(main_py);
|
|
if (ret & PYEXEC_FORCED_EXIT) {
|
|
goto soft_reset_exit;
|
|
}
|
|
if (!ret) {
|
|
flash_error(3);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Main script is finished, so now go into REPL mode.
|
|
// The REPL mode can change, or it can request a soft reset.
|
|
for (;;) {
|
|
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
|
|
if (pyexec_raw_repl() != 0) {
|
|
break;
|
|
}
|
|
} else {
|
|
if (pyexec_friendly_repl() != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
soft_reset_exit:
|
|
|
|
// soft reset
|
|
|
|
printf("PYB: sync filesystems\n");
|
|
storage_flush();
|
|
|
|
printf("PYB: soft reboot\n");
|
|
timer_deinit();
|
|
uart_deinit();
|
|
#if MICROPY_HW_ENABLE_CAN
|
|
can_deinit();
|
|
#endif
|
|
machine_deinit();
|
|
|
|
#if MICROPY_PY_THREAD
|
|
pyb_thread_deinit();
|
|
#endif
|
|
|
|
goto soft_reset;
|
|
}
|