circuitpython/docs/zephyr/tutorial/storage.rst
Jim Mussared c737cde947 docs: Replace ufoo with foo in all docs.
Anywhere a module is mentioned, use its "non-u" name for consistency.

The "import module" vs "import umodule" is something of a FAQ, and this
commit intends to help clear that up.  As a first approximation MicroPython
is Python, and so imports should work the same as Python and use the same
name, to a first approximation.  The u-version of a module is a detail that
can be learned later on, when the user wants to understand more and have
finer control over importing.

Existing Python code should just work, as much as it is possible to do that
within the constraints of embedded systems, and the MicroPython
documentation should match the idiomatic way to write Python code.

With universal weak links for modules (via MICROPY_MODULE_WEAK_LINKS) users
can consistently use "import foo" across all ports (with the exception of
the minimal ports).  And the ability to override/extend via "foo.py"
continues to work well.

Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
2021-08-13 22:53:29 +10:00

57 lines
2.8 KiB
ReStructuredText

.. _storage_zephyr:
Filesystems and Storage
=======================
Storage modules support virtual filesystem with FAT and littlefs formats, backed by either
Zephyr DiskAccess or FlashArea (flash map) APIs depending on which the board supports.
See `os Filesystem Mounting <https://docs.micropython.org/en/latest/library/os.html?highlight=os#filesystem-mounting>`_.
Disk Access
-----------
The :ref:`zephyr.DiskAccess <zephyr.DiskAccess>` class can be used to access storage devices, such as SD cards.
This class uses `Zephyr Disk Access API <https://docs.zephyrproject.org/latest/reference/storage/disk/access.html>`_ and
implements the `os.AbstractBlockDev` protocol.
For use with SD card controllers, SD cards must be present at boot & not removed; they will
be auto detected and initialized by filesystem at boot. Use the disk driver interface and a
file system to access SD cards via disk access (see below).
Example usage of FatFS with an SD card on the mimxrt1050_evk board::
import os
from zephyr import DiskAccess
bdev = zephyr.DiskAccess('SDHC') # create block device object using DiskAccess
os.VfsFat.mkfs(bdev) # create FAT filesystem object using the disk storage block
os.mount(bdev, '/sd') # mount the filesystem at the SD card subdirectory
with open('/sd/hello.txt','w') as f: # open a new file in the directory
f.write('Hello world') # write to the file
print(open('/sd/hello.txt').read()) # print contents of the file
Flash Area
----------
The :ref:`zephyr.FlashArea <zephyr.FlashArea>` class can be used to implement a low-level storage system or
customize filesystem configurations. To store persistent data on the device, using a higher-level filesystem
API is recommended (see below).
This class uses `Zephyr Flash map API <https://docs.zephyrproject.org/latest/reference/storage/flash_map/flash_map.html#>`_ and
implements the `os.AbstractBlockDev` protocol.
Example usage with the internal flash on the reel_board or the rv32m1_vega_ri5cy board::
import os
from zephyr import FlashArea
bdev = FlashArea(FlashArea.STORAGE, 4096) # create block device object using FlashArea
os.VfsLfs2.mkfs(bdev) # create Little filesystem object using the flash area block
os.mount(bdev, '/flash') # mount the filesystem at the flash storage subdirectory
with open('/flash/hello.txt','w') as f: # open a new file in the directory
f.write('Hello world') # write to the file
print(open('/flash/hello.txt').read()) # print contents of the file
For boards such as the frdm_k64f in which the MicroPython application spills into the default flash storage
partition, use the scratch partition by replacing ``FlashArea.STORAGE`` with the integer value 4.