circuitpython/shared-module/displayio/display_core.c
2020-03-13 11:12:30 -07:00

344 lines
13 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/displayio/Display.h"
#include "py/gc.h"
#include "py/runtime.h"
#include "shared-bindings/displayio/FourWire.h"
#include "shared-bindings/displayio/I2CDisplay.h"
#include "shared-bindings/displayio/ParallelBus.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/time/__init__.h"
#include "shared-module/displayio/__init__.h"
#include "supervisor/shared/display.h"
#include "supervisor/shared/tick.h"
#include <stdint.h>
#include <string.h>
void displayio_display_core_construct(displayio_display_core_t* self,
mp_obj_t bus, uint16_t width, uint16_t height, uint16_t ram_width, uint16_t ram_height, int16_t colstart, int16_t rowstart, uint16_t rotation,
uint16_t color_depth, bool grayscale, bool pixels_in_byte_share_row, uint8_t bytes_per_cell, bool reverse_pixels_in_byte) {
self->colorspace.depth = color_depth;
self->colorspace.grayscale = grayscale;
self->colorspace.pixels_in_byte_share_row = pixels_in_byte_share_row;
self->colorspace.bytes_per_cell = bytes_per_cell;
self->colorspace.reverse_pixels_in_byte = reverse_pixels_in_byte;
self->colorspace.dither = false;
self->current_group = NULL;
self->colstart = colstart;
self->rowstart = rowstart;
self->last_refresh = 0;
if (MP_OBJ_IS_TYPE(bus, &displayio_parallelbus_type)) {
self->bus_reset = common_hal_displayio_parallelbus_reset;
self->bus_free = common_hal_displayio_parallelbus_bus_free;
self->begin_transaction = common_hal_displayio_parallelbus_begin_transaction;
self->send = common_hal_displayio_parallelbus_send;
self->end_transaction = common_hal_displayio_parallelbus_end_transaction;
} else if (MP_OBJ_IS_TYPE(bus, &displayio_fourwire_type)) {
self->bus_reset = common_hal_displayio_fourwire_reset;
self->bus_free = common_hal_displayio_fourwire_bus_free;
self->begin_transaction = common_hal_displayio_fourwire_begin_transaction;
self->send = common_hal_displayio_fourwire_send;
self->end_transaction = common_hal_displayio_fourwire_end_transaction;
} else if (MP_OBJ_IS_TYPE(bus, &displayio_i2cdisplay_type)) {
self->bus_reset = common_hal_displayio_i2cdisplay_reset;
self->bus_free = common_hal_displayio_i2cdisplay_bus_free;
self->begin_transaction = common_hal_displayio_i2cdisplay_begin_transaction;
self->send = common_hal_displayio_i2cdisplay_send;
self->end_transaction = common_hal_displayio_i2cdisplay_end_transaction;
} else {
mp_raise_ValueError(translate("Unsupported display bus type"));
}
self->bus = bus;
supervisor_start_terminal(width, height);
self->width = width;
self->height = height;
self->ram_width = ram_width;
self->ram_height = ram_height;
displayio_display_core_set_rotation(self, rotation);
}
void displayio_display_core_set_rotation( displayio_display_core_t* self,
int rotation) {
int height = self->height;
int width = self->width;
rotation = rotation % 360;
self->rotation = rotation;
self->transform.x = 0;
self->transform.y = 0;
self->transform.scale = 1;
self->transform.mirror_x = false;
self->transform.mirror_y = false;
self->transform.transpose_xy = false;
if (rotation == 0 || rotation == 180) {
if (rotation == 180) {
self->transform.mirror_x = true;
self->transform.mirror_y = true;
}
} else {
self->transform.transpose_xy = true;
if (rotation == 270) {
self->transform.mirror_y = true;
} else {
self->transform.mirror_x = true;
}
}
self->area.x1 = 0;
self->area.y1 = 0;
self->area.next = NULL;
self->transform.dx = 1;
self->transform.dy = 1;
if (self->transform.transpose_xy) {
self->area.x2 = height;
self->area.y2 = width;
if (self->transform.mirror_x) {
self->transform.x = height;
self->transform.dx = -1;
}
if (self->transform.mirror_y) {
self->transform.y = width;
self->transform.dy = -1;
}
} else {
self->area.x2 = width;
self->area.y2 = height;
if (self->transform.mirror_x) {
self->transform.x = width;
self->transform.dx = -1;
}
if (self->transform.mirror_y) {
self->transform.y = height;
self->transform.dy = -1;
}
}
}
bool displayio_display_core_show(displayio_display_core_t* self, displayio_group_t* root_group) {
if (root_group == NULL) {
if (!circuitpython_splash.in_group) {
root_group = &circuitpython_splash;
} else if (self->current_group == &circuitpython_splash) {
return true;
}
}
if (root_group == self->current_group) {
return true;
}
if (root_group != NULL && root_group->in_group) {
return false;
}
if (self->current_group != NULL) {
self->current_group->in_group = false;
}
if (root_group != NULL) {
displayio_group_update_transform(root_group, &self->transform);
root_group->in_group = true;
}
self->current_group = root_group;
self->full_refresh = true;
return true;
}
uint16_t displayio_display_core_get_width(displayio_display_core_t* self){
return self->width;
}
uint16_t displayio_display_core_get_height(displayio_display_core_t* self){
return self->height;
}
void displayio_display_core_set_dither(displayio_display_core_t* self, bool dither){
self->colorspace.dither = dither;
}
bool displayio_display_core_get_dither(displayio_display_core_t* self){
return self->colorspace.dither;
}
bool displayio_display_core_bus_free(displayio_display_core_t *self) {
return self->bus_free(self->bus);
}
bool displayio_display_core_begin_transaction(displayio_display_core_t* self) {
return self->begin_transaction(self->bus);
}
void displayio_display_core_end_transaction(displayio_display_core_t* self) {
self->end_transaction(self->bus);
}
void displayio_display_core_set_region_to_update(displayio_display_core_t* self, uint8_t column_command, uint8_t row_command, uint16_t set_current_column_command, uint16_t set_current_row_command, bool data_as_commands, bool always_toggle_chip_select, displayio_area_t* area) {
uint16_t x1 = area->x1;
uint16_t x2 = area->x2;
uint16_t y1 = area->y1;
uint16_t y2 = area->y2;
// Collapse down the dimension where multiple pixels are in a byte.
if (self->colorspace.depth < 8) {
uint8_t pixels_per_byte = 8 / self->colorspace.depth;
if (self->colorspace.pixels_in_byte_share_row) {
x1 /= pixels_per_byte * self->colorspace.bytes_per_cell;
x2 /= pixels_per_byte * self->colorspace.bytes_per_cell;
} else {
y1 /= pixels_per_byte * self->colorspace.bytes_per_cell;
y2 /= pixels_per_byte * self->colorspace.bytes_per_cell;
}
}
display_chip_select_behavior_t chip_select = CHIP_SELECT_UNTOUCHED;
if (always_toggle_chip_select || data_as_commands) {
chip_select = CHIP_SELECT_TOGGLE_EVERY_BYTE;
}
// Set column.
displayio_display_core_begin_transaction(self);
uint8_t data[5];
data[0] = column_command;
uint8_t data_length = 1;
display_byte_type_t data_type = DISPLAY_DATA;
if (!data_as_commands) {
self->send(self->bus, DISPLAY_COMMAND, CHIP_SELECT_UNTOUCHED, data, 1);
data_length = 0;
} else {
data_type = DISPLAY_COMMAND;
}
if (self->ram_width < 0x100) {
data[data_length++] = x1 + self->colstart;
data[data_length++] = x2 - 1 + self->colstart;
} else {
x1 += self->colstart;
x2 += self->colstart - 1;
data[data_length++] = x1 >> 8;
data[data_length++] = x1 & 0xff;
data[data_length++] = x2 >> 8;
data[data_length++] = x2 & 0xff;
}
self->send(self->bus, data_type, chip_select, data, data_length);
displayio_display_core_end_transaction(self);
if (set_current_column_command != NO_COMMAND) {
uint8_t command = set_current_column_command;
displayio_display_core_begin_transaction(self);
self->send(self->bus, DISPLAY_COMMAND, chip_select, &command, 1);
self->send(self->bus, DISPLAY_DATA, chip_select, data, data_length / 2);
displayio_display_core_end_transaction(self);
}
// Set row.
displayio_display_core_begin_transaction(self);
data[0] = row_command;
data_length = 1;
if (!data_as_commands) {
self->send(self->bus, DISPLAY_COMMAND, CHIP_SELECT_UNTOUCHED, data, 1);
data_length = 0;
}
if (self->ram_height < 0x100) {
data[data_length++] = y1 + self->rowstart;
data[data_length++] = y2 - 1 + self->rowstart;
} else {
y1 += self->rowstart;
y2 += self->rowstart - 1;
data[data_length++] = y1 >> 8;
data[data_length++] = y1 & 0xff;
data[data_length++] = y2 >> 8;
data[data_length++] = y2 & 0xff;
}
self->send(self->bus, data_type, chip_select, data, data_length);
displayio_display_core_end_transaction(self);
if (set_current_row_command != NO_COMMAND) {
uint8_t command = set_current_row_command;
displayio_display_core_begin_transaction(self);
self->send(self->bus, DISPLAY_COMMAND, chip_select, &command, 1);
self->send(self->bus, DISPLAY_DATA, chip_select, data, data_length / 2);
displayio_display_core_end_transaction(self);
}
}
void displayio_display_core_start_refresh(displayio_display_core_t* self) {
self->last_refresh = supervisor_ticks_ms64();
}
void displayio_display_core_finish_refresh(displayio_display_core_t* self) {
if (self->current_group != NULL) {
displayio_group_finish_refresh(self->current_group);
}
self->full_refresh = false;
self->last_refresh = supervisor_ticks_ms64();
}
void release_display_core(displayio_display_core_t* self) {
if (self->current_group != NULL) {
self->current_group->in_group = false;
}
}
void displayio_display_core_collect_ptrs(displayio_display_core_t* self) {
gc_collect_ptr(self->current_group);
}
bool displayio_display_core_fill_area(displayio_display_core_t *self, displayio_area_t* area, uint32_t* mask, uint32_t *buffer) {
return displayio_group_fill_area(self->current_group, &self->colorspace, area, mask, buffer);
}
bool displayio_display_core_clip_area(displayio_display_core_t *self, const displayio_area_t* area, displayio_area_t* clipped) {
bool overlaps = displayio_area_compute_overlap(&self->area, area, clipped);
if (!overlaps) {
return false;
}
// Expand the area if we have multiple pixels per byte and we need to byte
// align the bounds.
if (self->colorspace.depth < 8) {
uint8_t pixels_per_byte = 8 / self->colorspace.depth * self->colorspace.bytes_per_cell;
if (self->colorspace.pixels_in_byte_share_row) {
if (clipped->x1 % pixels_per_byte != 0) {
clipped->x1 -= clipped->x1 % pixels_per_byte;
}
if (clipped->x2 % pixels_per_byte != 0) {
clipped->x2 += pixels_per_byte - clipped->x2 % pixels_per_byte;
}
} else {
if (clipped->y1 % pixels_per_byte != 0) {
clipped->y1 -= clipped->y1 % pixels_per_byte;
}
if (clipped->y2 % pixels_per_byte != 0) {
clipped->y2 += pixels_per_byte - clipped->y2 % pixels_per_byte;
}
}
}
return true;
}