1639 lines
53 KiB
C
1639 lines
53 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32f4xx_hal_i2s.c
|
|
* @author MCD Application Team
|
|
* @version V1.0.0
|
|
* @date 18-February-2014
|
|
* @brief I2S HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the Integrated Interchip Sound (I2S) peripheral:
|
|
* + Initialization and de-initialization functions
|
|
* + IO operation functions
|
|
* + Peripheral State and Errors functions
|
|
@verbatim
|
|
===============================================================================
|
|
##### How to use this driver #####
|
|
===============================================================================
|
|
[..]
|
|
The I2S HAL driver can be used as follow:
|
|
|
|
(#) Declare a I2S_HandleTypeDef handle structure.
|
|
(#) Initialize the I2S low level resources by implement the HAL_I2S_MspInit() API:
|
|
(##) Enable the SPIx interface clock.
|
|
(##) I2S pins configuration:
|
|
(+++) Enable the clock for the I2S GPIOs.
|
|
(+++) Configure these I2S pins as alternate function pull-up.
|
|
(##) NVIC configuration if you need to use interrupt process (HAL_I2S_Transmit_IT()
|
|
and HAL_I2S_Receive_IT() APIs).
|
|
(+++) Configure the I2Sx interrupt priority.
|
|
(+++) Enable the NVIC I2S IRQ handle.
|
|
(##) DMA Configuration if you need to use DMA process (HAL_I2S_Transmit_DMA()
|
|
and HAL_I2S_Receive_DMA() APIs:
|
|
(+++) Declare a DMA handle structure for the Tx/Rx stream.
|
|
(+++) Enable the DMAx interface clock.
|
|
(+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
|
|
(+++) Configure the DMA Tx/Rx Stream.
|
|
(+++) Associate the initilalized DMA handle to the I2S DMA Tx/Rx handle.
|
|
(+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the
|
|
DMA Tx/Rx Stream.
|
|
|
|
(#) Program the Mode, Standard, Data Format, MCLK Output, Audio frequency and Polarity
|
|
using HAL_I2S_Init() function.
|
|
|
|
-@- The specific I2S interrupts (Transmission complete interrupt,
|
|
RXNE interrupt and Error Interrupts) will be managed using the macros
|
|
__I2S_ENABLE_IT() and __I2S_DISABLE_IT() inside the transmit and receive process.
|
|
-@- Make sure that either:
|
|
(+@) I2S PLL is configured or
|
|
(+@) External clock source is configured after setting correctly
|
|
the define constant EXTERNAL_CLOCK_VALUE in the stm32f4xx_hal_conf.h file.
|
|
|
|
(#) Three mode of operations are available within this driver :
|
|
|
|
*** Polling mode IO operation ***
|
|
=================================
|
|
[..]
|
|
(+) Send an amount of data in blocking mode using HAL_I2S_Transmit()
|
|
(+) Receive an amount of data in blocking mode using HAL_I2S_Receive()
|
|
|
|
*** Interrupt mode IO operation ***
|
|
===================================
|
|
[..]
|
|
(+) Send an amount of data in non blocking mode using HAL_I2S_Transmit_IT()
|
|
(+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can
|
|
add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback
|
|
(+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can
|
|
add his own code by customization of function pointer HAL_I2S_TxCpltCallback
|
|
(+) Receive an amount of data in non blocking mode using HAL_I2S_Receive_IT()
|
|
(+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can
|
|
add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback
|
|
(+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can
|
|
add his own code by customization of function pointer HAL_I2S_RxCpltCallback
|
|
(+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can
|
|
add his own code by customization of function pointer HAL_I2S_ErrorCallback
|
|
|
|
*** DMA mode IO operation ***
|
|
==============================
|
|
[..]
|
|
(+) Send an amount of data in non blocking mode (DMA) using HAL_I2S_Transmit_DMA()
|
|
(+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can
|
|
add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback
|
|
(+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can
|
|
add his own code by customization of function pointer HAL_I2S_TxCpltCallback
|
|
(+) Receive an amount of data in non blocking mode (DMA) using HAL_I2S_Receive_DMA()
|
|
(+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can
|
|
add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback
|
|
(+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can
|
|
add his own code by customization of function pointer HAL_I2S_RxCpltCallback
|
|
(+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can
|
|
add his own code by customization of function pointer HAL_I2S_ErrorCallback
|
|
(+) Pause the DMA Transfer using HAL_I2S_DMAPause()
|
|
(+) Resume the DMA Transfer using HAL_I2S_DMAResume()
|
|
(+) Stop the DMA Transfer using HAL_I2S_DMAStop()
|
|
|
|
*** I2S HAL driver macros list ***
|
|
=============================================
|
|
[..]
|
|
Below the list of most used macros in USART HAL driver.
|
|
|
|
(+) __HAL_I2S_ENABLE: Enable the specified SPI peripheral (in I2S mode)
|
|
(+) __HAL_I2S_DISABLE: Disable the specified SPI peripheral (in I2S mode)
|
|
(+) __HAL_I2S_ENABLE_IT : Enable the specified I2S interrupts
|
|
(+) __HAL_I2S_DISABLE_IT : Disable the specified I2S interrupts
|
|
(+) __HAL_I2S_GET_FLAG: Check whether the specified I2S flag is set or not
|
|
|
|
[..]
|
|
(@) You can refer to the I2S HAL driver header file for more useful macros
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32f4xx_hal.h"
|
|
|
|
/** @addtogroup STM32F4xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup I2S
|
|
* @brief I2S HAL module driver
|
|
* @{
|
|
*/
|
|
|
|
#ifdef HAL_I2S_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
static HAL_StatusTypeDef I2S_Transmit_IT(I2S_HandleTypeDef *hi2s);
|
|
static HAL_StatusTypeDef I2S_Receive_IT(I2S_HandleTypeDef *hi2s);
|
|
/* Private functions ---------------------------------------------------------*/
|
|
|
|
/** @defgroup I2S_Private_Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup I2S_Group1 Initialization and de-initialization functions
|
|
* @brief Initialization and Configuration functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and de-initialization functions #####
|
|
===============================================================================
|
|
[..] This subsection provides a set of functions allowing to initialize and
|
|
de-initialiaze the I2Sx peripheral in simplex mode:
|
|
|
|
(+) User must Implement HAL_I2S_MspInit() function in which he configures
|
|
all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
|
|
|
|
(+) Call the function HAL_I2S_Init() to configure the selected device with
|
|
the selected configuration:
|
|
(++) Mode
|
|
(++) Standard
|
|
(++) Data Format
|
|
(++) MCLK Output
|
|
(++) Audio frequency
|
|
(++) Polarity
|
|
(++) Full duplex mode
|
|
|
|
(+) Call the function HAL_I2S_DeInit() to restore the default configuration
|
|
of the selected I2Sx periperal.
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initializes the I2S according to the specified parameters
|
|
* in the I2S_InitTypeDef and create the associated handle.
|
|
* @param hi2s: I2S handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
uint32_t tmpreg = 0, i2sdiv = 2, i2sodd = 0, packetlength = 1;
|
|
uint32_t tmp = 0, i2sclk = 0;
|
|
|
|
/* Check the I2S handle allocation */
|
|
if(hi2s == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the I2S parameters */
|
|
assert_param(IS_I2S_MODE(hi2s->Init.Mode));
|
|
assert_param(IS_I2S_STANDARD(hi2s->Init.Standard));
|
|
assert_param(IS_I2S_DATA_FORMAT(hi2s->Init.DataFormat));
|
|
assert_param(IS_I2S_MCLK_OUTPUT(hi2s->Init.MCLKOutput));
|
|
assert_param(IS_I2S_AUDIO_FREQ(hi2s->Init.AudioFreq));
|
|
assert_param(IS_I2S_CPOL(hi2s->Init.CPOL));
|
|
assert_param(IS_I2S_CLOCKSOURCE(hi2s->Init.ClockSource));
|
|
assert_param(IS_I2S_FULLDUPLEX_MODE(hi2s->Init.FullDuplexMode));
|
|
|
|
if(hi2s->State == HAL_I2S_STATE_RESET)
|
|
{
|
|
/* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
|
|
HAL_I2S_MspInit(hi2s);
|
|
}
|
|
|
|
hi2s->State = HAL_I2S_STATE_BUSY;
|
|
|
|
/*----------------------- SPIx I2SCFGR & I2SPR Configuration ---------------*/
|
|
/* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
|
|
hi2s->Instance->I2SCFGR &= ~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \
|
|
SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \
|
|
SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD);
|
|
hi2s->Instance->I2SPR = 0x0002;
|
|
|
|
/* Get the I2SCFGR register value */
|
|
tmpreg = hi2s->Instance->I2SCFGR;
|
|
|
|
/* If the default frequency value has to be written, reinitialize i2sdiv and i2sodd */
|
|
/* If the requested audio frequency is not the default, compute the prescaler */
|
|
if(hi2s->Init.AudioFreq != I2S_AUDIOFREQ_DEFAULT)
|
|
{
|
|
/* Check the frame length (For the Prescaler computing) *******************/
|
|
if(hi2s->Init.DataFormat != I2S_DATAFORMAT_16B)
|
|
{
|
|
/* Packet length is 32 bits */
|
|
packetlength = 2;
|
|
}
|
|
|
|
/* Get I2S source Clock frequency ****************************************/
|
|
/* If an external I2S clock has to be used, the specific define should be set
|
|
in the project configuration or in the stm32f4xx_conf.h file */
|
|
if(hi2s->Init.ClockSource == I2S_CLOCK_EXTERNAL)
|
|
{
|
|
/* Set external clock as I2S clock source */
|
|
if((RCC->CFGR & RCC_CFGR_I2SSRC) == 0)
|
|
{
|
|
RCC->CFGR |= (uint32_t)RCC_CFGR_I2SSRC;
|
|
}
|
|
|
|
/* Set the I2S clock to the external clock value */
|
|
i2sclk = EXTERNAL_CLOCK_VALUE;
|
|
}
|
|
else
|
|
{
|
|
/* Check if PLLI2S is enabled or Not */
|
|
if((RCC->CR & RCC_CR_PLLI2SON) != RCC_CR_PLLI2SON)
|
|
{
|
|
hi2s->State= HAL_I2S_STATE_READY;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Set PLLI2S as I2S clock source */
|
|
if((RCC->CFGR & RCC_CFGR_I2SSRC) != 0)
|
|
{
|
|
RCC->CFGR &= ~(uint32_t)RCC_CFGR_I2SSRC;
|
|
}
|
|
|
|
/* Get the PLLM value */
|
|
if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
|
|
{
|
|
/* Get the I2S source clock value */
|
|
i2sclk = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
|
|
}
|
|
else
|
|
{
|
|
/* Get the I2S source clock value */
|
|
i2sclk = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
|
|
}
|
|
i2sclk *= (uint32_t)(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6) & (RCC_PLLI2SCFGR_PLLI2SN >> 6));
|
|
i2sclk /= (uint32_t)(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28) & (RCC_PLLI2SCFGR_PLLI2SR >> 28));
|
|
}
|
|
|
|
/* Compute the Real divider depending on the MCLK output state, with a floating point */
|
|
if(hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE)
|
|
{
|
|
/* MCLK output is enabled */
|
|
tmp = (uint32_t)(((((i2sclk / 256) * 10) / hi2s->Init.AudioFreq)) + 5);
|
|
}
|
|
else
|
|
{
|
|
/* MCLK output is disabled */
|
|
tmp = (uint32_t)(((((i2sclk / (32 * packetlength)) *10 ) / hi2s->Init.AudioFreq)) + 5);
|
|
}
|
|
|
|
/* Remove the flatting point */
|
|
tmp = tmp / 10;
|
|
|
|
/* Check the parity of the divider */
|
|
i2sodd = (uint32_t)(tmp & (uint32_t)1);
|
|
|
|
/* Compute the i2sdiv prescaler */
|
|
i2sdiv = (uint32_t)((tmp - i2sodd) / 2);
|
|
|
|
/* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */
|
|
i2sodd = (uint32_t) (i2sodd << 8);
|
|
}
|
|
|
|
/* Test if the divider is 1 or 0 or greater than 0xFF */
|
|
if((i2sdiv < 2) || (i2sdiv > 0xFF))
|
|
{
|
|
/* Set the default values */
|
|
i2sdiv = 2;
|
|
i2sodd = 0;
|
|
}
|
|
|
|
/* Write to SPIx I2SPR register the computed value */
|
|
hi2s->Instance->I2SPR = (uint32_t)((uint32_t)i2sdiv | (uint32_t)(i2sodd | (uint32_t)hi2s->Init.MCLKOutput));
|
|
|
|
/* Configure the I2S with the I2S_InitStruct values */
|
|
tmpreg |= (uint32_t)(SPI_I2SCFGR_I2SMOD | hi2s->Init.Mode | hi2s->Init.Standard | hi2s->Init.DataFormat | hi2s->Init.CPOL);
|
|
|
|
/* Write to SPIx I2SCFGR */
|
|
hi2s->Instance->I2SCFGR = tmpreg;
|
|
|
|
/* Configure the I2S extended if the full duplex mode is enabled */
|
|
if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
|
|
{
|
|
/* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
|
|
I2SxEXT(hi2s->Instance)->I2SCFGR &= ~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \
|
|
SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \
|
|
SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD);
|
|
I2SxEXT(hi2s->Instance)->I2SPR = 2;
|
|
|
|
/* Get the I2SCFGR register value */
|
|
tmpreg = I2SxEXT(hi2s->Instance)->I2SCFGR;
|
|
|
|
/* Get the mode to be configured for the extended I2S */
|
|
if((hi2s->Init.Mode == I2S_MODE_MASTER_TX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_TX))
|
|
{
|
|
tmp = I2S_MODE_SLAVE_RX;
|
|
}
|
|
else
|
|
{
|
|
if((hi2s->Init.Mode == I2S_MODE_MASTER_RX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_RX))
|
|
{
|
|
tmp = I2S_MODE_SLAVE_TX;
|
|
}
|
|
}
|
|
|
|
/* Configure the I2S Slave with the I2S Master parameter values */
|
|
tmpreg |= (uint32_t)(SPI_I2SCFGR_I2SMOD | tmp | hi2s->Init.Standard | hi2s->Init.DataFormat | hi2s->Init.CPOL);
|
|
|
|
/* Write to SPIx I2SCFGR */
|
|
I2SxEXT(hi2s->Instance)->I2SCFGR = tmpreg;
|
|
}
|
|
|
|
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
|
|
hi2s->State= HAL_I2S_STATE_READY;
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitializes the I2S peripheral
|
|
* @param hi2s: I2S handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_I2S_DeInit(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
/* Check the I2S handle allocation */
|
|
if(hi2s == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
hi2s->State = HAL_I2S_STATE_BUSY;
|
|
|
|
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
|
|
HAL_I2S_MspDeInit(hi2s);
|
|
|
|
hi2s->State = HAL_I2S_STATE_RESET;
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief I2S MSP Init
|
|
* @param hi2s: I2S handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_I2S_MspInit(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_I2S_MspInit could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief I2S MSP DeInit
|
|
* @param hi2s: I2S handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_I2S_MspDeInit(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_I2S_MspDeInit could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup I2S_Group2 IO operation functions
|
|
* @brief Data transfers functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### IO operation functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to manage the I2S data
|
|
transfers.
|
|
|
|
(#) There is two mode of transfer:
|
|
(++) Blocking mode : The communication is performed in the polling mode.
|
|
The status of all data processing is returned by the same function
|
|
after finishing transfer.
|
|
(++) No-Blocking mode : The communication is performed using Interrupts
|
|
or DMA. These functions return the status of the transfer startup.
|
|
The end of the data processing will be indicated through the
|
|
dedicated I2S IRQ when using Interrupt mode or the DMA IRQ when
|
|
using DMA mode.
|
|
|
|
(#) Blocking mode functions are :
|
|
(++) HAL_I2S_Transmit()
|
|
(++) HAL_I2S_Receive()
|
|
|
|
(#) No-Blocking mode functions with Interrupt are :
|
|
(++) HAL_I2S_Transmit_IT()
|
|
(++) HAL_I2S_Receive_IT()
|
|
|
|
(#) No-Blocking mode functions with DMA are :
|
|
(++) HAL_I2S_Transmit_DMA()
|
|
(++) HAL_I2S_Receive_DMA()
|
|
|
|
(#) A set of Transfer Complete Callbacks are provided in No_Blocking mode:
|
|
(++) HAL_I2S_TxCpltCallback()
|
|
(++) HAL_I2S_RxCpltCallback()
|
|
(++) HAL_I2S_ErrorCallback()
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Transmit an amount of data in blocking mode
|
|
* @param hi2s: I2S handle
|
|
* @param pData: a 16-bit pointer to data buffer.
|
|
* @param Size: number of data sample to be sent:
|
|
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
|
|
* configuration phase, the Size parameter means the number of 16-bit data length
|
|
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
|
|
* the Size parameter means the number of 16-bit data length.
|
|
* @param Timeout: Timeout duration
|
|
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
|
|
* between Master and Slave(example: audio streaming).
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_I2S_Transmit(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout)
|
|
{
|
|
uint32_t tmp1 = 0, tmp2 = 0;
|
|
if((pData == NULL ) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
if(hi2s->State == HAL_I2S_STATE_READY)
|
|
{
|
|
tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
if((tmp1 == I2S_DATAFORMAT_24B)|| \
|
|
(tmp2 == I2S_DATAFORMAT_32B))
|
|
{
|
|
hi2s->TxXferSize = Size*2;
|
|
hi2s->TxXferCount = Size*2;
|
|
}
|
|
else
|
|
{
|
|
hi2s->TxXferSize = Size;
|
|
hi2s->TxXferCount = Size;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hi2s);
|
|
|
|
hi2s->State = HAL_I2S_STATE_BUSY_TX;
|
|
|
|
/* Check if the I2S is already enabled */
|
|
if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
|
|
{
|
|
/* Enable I2S peripheral */
|
|
__HAL_I2S_ENABLE(hi2s);
|
|
}
|
|
|
|
while(hi2s->TxXferCount > 0)
|
|
{
|
|
hi2s->Instance->DR = (*pData++);
|
|
hi2s->TxXferCount--;
|
|
/* Wait until TXE flag is set */
|
|
if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, RESET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* Wait until Busy flag is reset */
|
|
if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_BSY, SET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
hi2s->State = HAL_I2S_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in blocking mode
|
|
* @param hi2s: I2S handle
|
|
* @param pData: a 16-bit pointer to data buffer.
|
|
* @param Size: number of data sample to be sent:
|
|
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
|
|
* configuration phase, the Size parameter means the number of 16-bit data length
|
|
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
|
|
* the Size parameter means the number of 16-bit data length.
|
|
* @param Timeout: Timeout duration
|
|
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
|
|
* between Master and Slave(example: audio streaming).
|
|
* @note In I2S Master Receiver mode, just after enabling the peripheral the clock will be generate
|
|
* in continouse way and as the I2S is not disabled at the end of the I2S transaction.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_I2S_Receive(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout)
|
|
{
|
|
uint32_t tmp1 = 0, tmp2 = 0;
|
|
if((pData == NULL ) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
if(hi2s->State == HAL_I2S_STATE_READY)
|
|
{
|
|
tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
if((tmp1 == I2S_DATAFORMAT_24B)|| \
|
|
(tmp2 == I2S_DATAFORMAT_32B))
|
|
{
|
|
hi2s->RxXferSize = Size*2;
|
|
hi2s->RxXferCount = Size*2;
|
|
}
|
|
else
|
|
{
|
|
hi2s->RxXferSize = Size;
|
|
hi2s->RxXferCount = Size;
|
|
}
|
|
/* Process Locked */
|
|
__HAL_LOCK(hi2s);
|
|
|
|
hi2s->State = HAL_I2S_STATE_BUSY_RX;
|
|
|
|
/* Check if the I2S is already enabled */
|
|
if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
|
|
{
|
|
/* Enable I2S peripheral */
|
|
__HAL_I2S_ENABLE(hi2s);
|
|
}
|
|
|
|
/* Check if Master Receiver mode is selected */
|
|
if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
|
|
{
|
|
/* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read
|
|
access to the SPI_SR register. */
|
|
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
|
|
}
|
|
|
|
/* Receive data */
|
|
while(hi2s->RxXferCount > 0)
|
|
{
|
|
/* Wait until RXNE flag is set */
|
|
if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXNE, RESET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
(*pData++) = hi2s->Instance->DR;
|
|
hi2s->RxXferCount--;
|
|
}
|
|
|
|
hi2s->State = HAL_I2S_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit an amount of data in non-blocking mode with Interrupt
|
|
* @param hi2s: I2S handle
|
|
* @param pData: a 16-bit pointer to data buffer.
|
|
* @param Size: number of data sample to be sent:
|
|
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
|
|
* configuration phase, the Size parameter means the number of 16-bit data length
|
|
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
|
|
* the Size parameter means the number of 16-bit data length.
|
|
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
|
|
* between Master and Slave(example: audio streaming).
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
|
|
{
|
|
uint32_t tmp1 = 0, tmp2 = 0;
|
|
if(hi2s->State == HAL_I2S_STATE_READY)
|
|
{
|
|
if((pData == NULL) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
hi2s->pTxBuffPtr = pData;
|
|
tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
if((tmp1 == I2S_DATAFORMAT_24B)|| \
|
|
(tmp2 == I2S_DATAFORMAT_32B))
|
|
{
|
|
hi2s->TxXferSize = Size*2;
|
|
hi2s->TxXferCount = Size*2;
|
|
}
|
|
else
|
|
{
|
|
hi2s->TxXferSize = Size;
|
|
hi2s->TxXferCount = Size;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hi2s);
|
|
|
|
hi2s->State = HAL_I2S_STATE_BUSY_TX;
|
|
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
|
|
|
|
/* Enable TXE and ERR interrupt */
|
|
__HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
|
|
|
|
/* Check if the I2S is already enabled */
|
|
if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
|
|
{
|
|
/* Enable I2S peripheral */
|
|
__HAL_I2S_ENABLE(hi2s);
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in non-blocking mode with Interrupt
|
|
* @param hi2s: I2S handle
|
|
* @param pData: a 16-bit pointer to the Receive data buffer.
|
|
* @param Size: number of data sample to be sent:
|
|
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
|
|
* configuration phase, the Size parameter means the number of 16-bit data length
|
|
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
|
|
* the Size parameter means the number of 16-bit data length.
|
|
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
|
|
* between Master and Slave(example: audio streaming).
|
|
* @note It is recommended to use DMA for the I2S receiver to avoid de-synchronisation
|
|
* between Master and Slave otherwise the I2S interrupt should be optimized.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
|
|
{
|
|
uint32_t tmp1 = 0, tmp2 = 0;
|
|
if(hi2s->State == HAL_I2S_STATE_READY)
|
|
{
|
|
if((pData == NULL) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
hi2s->pRxBuffPtr = pData;
|
|
tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
if((tmp1 == I2S_DATAFORMAT_24B)||\
|
|
(tmp2 == I2S_DATAFORMAT_32B))
|
|
{
|
|
hi2s->RxXferSize = Size*2;
|
|
hi2s->RxXferCount = Size*2;
|
|
}
|
|
else
|
|
{
|
|
hi2s->RxXferSize = Size;
|
|
hi2s->RxXferCount = Size;
|
|
}
|
|
/* Process Locked */
|
|
__HAL_LOCK(hi2s);
|
|
|
|
hi2s->State = HAL_I2S_STATE_BUSY_RX;
|
|
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
|
|
|
|
/* Enable TXE and ERR interrupt */
|
|
__HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
|
|
|
|
/* Check if the I2S is already enabled */
|
|
if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
|
|
{
|
|
/* Enable I2S peripheral */
|
|
__HAL_I2S_ENABLE(hi2s);
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit an amount of data in non-blocking mode with DMA
|
|
* @param hi2s: I2S handle
|
|
* @param pData: a 16-bit pointer to the Transmit data buffer.
|
|
* @param Size: number of data sample to be sent:
|
|
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
|
|
* configuration phase, the Size parameter means the number of 16-bit data length
|
|
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
|
|
* the Size parameter means the number of 16-bit data length.
|
|
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
|
|
* between Master and Slave(example: audio streaming).
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
|
|
{
|
|
uint32_t *tmp;
|
|
uint32_t tmp1 = 0, tmp2 = 0;
|
|
|
|
if((pData == NULL) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
if(hi2s->State == HAL_I2S_STATE_READY)
|
|
{
|
|
hi2s->pTxBuffPtr = pData;
|
|
tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
if((tmp1 == I2S_DATAFORMAT_24B)|| \
|
|
(tmp2 == I2S_DATAFORMAT_32B))
|
|
{
|
|
hi2s->TxXferSize = Size*2;
|
|
hi2s->TxXferCount = Size*2;
|
|
}
|
|
else
|
|
{
|
|
hi2s->TxXferSize = Size;
|
|
hi2s->TxXferCount = Size;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hi2s);
|
|
|
|
hi2s->State = HAL_I2S_STATE_BUSY_TX;
|
|
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
|
|
|
|
/* Set the I2S Tx DMA Half transfert complete callback */
|
|
hi2s->hdmatx->XferHalfCpltCallback = I2S_DMATxHalfCplt;
|
|
|
|
/* Set the I2S Tx DMA transfert complete callback */
|
|
hi2s->hdmatx->XferCpltCallback = I2S_DMATxCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
hi2s->hdmatx->XferErrorCallback = I2S_DMAError;
|
|
|
|
/* Enable the Tx DMA Stream */
|
|
tmp = (uint32_t*)&pData;
|
|
HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t*)tmp, (uint32_t)&hi2s->Instance->DR, hi2s->TxXferSize);
|
|
|
|
/* Check if the I2S is already enabled */
|
|
if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
|
|
{
|
|
/* Enable I2S peripheral */
|
|
__HAL_I2S_ENABLE(hi2s);
|
|
}
|
|
|
|
/* Check if the I2S Tx request is already enabled */
|
|
if((hi2s->Instance->CR2 & SPI_CR2_TXDMAEN) != SPI_CR2_TXDMAEN)
|
|
{
|
|
/* Enable Tx DMA Request */
|
|
hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in non-blocking mode with DMA
|
|
* @param hi2s: I2S handle
|
|
* @param pData: a 16-bit pointer to the Receive data buffer.
|
|
* @param Size: number of data sample to be sent:
|
|
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
|
|
* configuration phase, the Size parameter means the number of 16-bit data length
|
|
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
|
|
* the Size parameter means the number of 16-bit data length.
|
|
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
|
|
* between Master and Slave(example: audio streaming).
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
|
|
{
|
|
uint32_t *tmp;
|
|
uint32_t tmp1 = 0, tmp2 = 0;
|
|
|
|
if((pData == NULL) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
if(hi2s->State == HAL_I2S_STATE_READY)
|
|
{
|
|
hi2s->pRxBuffPtr = pData;
|
|
tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
|
|
if((tmp1 == I2S_DATAFORMAT_24B)|| \
|
|
(tmp2 == I2S_DATAFORMAT_32B))
|
|
{
|
|
hi2s->RxXferSize = Size*2;
|
|
hi2s->RxXferCount = Size*2;
|
|
}
|
|
else
|
|
{
|
|
hi2s->RxXferSize = Size;
|
|
hi2s->RxXferCount = Size;
|
|
}
|
|
/* Process Locked */
|
|
__HAL_LOCK(hi2s);
|
|
|
|
hi2s->State = HAL_I2S_STATE_BUSY_RX;
|
|
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
|
|
|
|
/* Set the I2S Rx DMA Half transfert complete callback */
|
|
hi2s->hdmarx->XferHalfCpltCallback = I2S_DMARxHalfCplt;
|
|
|
|
/* Set the I2S Rx DMA transfert complete callback */
|
|
hi2s->hdmarx->XferCpltCallback = I2S_DMARxCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
hi2s->hdmarx->XferErrorCallback = I2S_DMAError;
|
|
|
|
/* Check if Master Receiver mode is selected */
|
|
if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
|
|
{
|
|
/* Clear the Overrun Flag by a read operation to the SPI_DR register followed by a read
|
|
access to the SPI_SR register. */
|
|
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
|
|
}
|
|
|
|
/* Enable the Rx DMA Stream */
|
|
tmp = (uint32_t*)&pData;
|
|
HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->DR, *(uint32_t*)tmp, hi2s->RxXferSize);
|
|
|
|
/* Check if the I2S is already enabled */
|
|
if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
|
|
{
|
|
/* Enable I2S peripheral */
|
|
__HAL_I2S_ENABLE(hi2s);
|
|
}
|
|
|
|
/* Check if the I2S Rx request is already enabled */
|
|
if((hi2s->Instance->CR2 &SPI_CR2_RXDMAEN) != SPI_CR2_RXDMAEN)
|
|
{
|
|
/* Enable Rx DMA Request */
|
|
hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Pauses the audio stream playing from the Media.
|
|
* @param hi2s: I2S handle
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hi2s);
|
|
|
|
if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
|
|
{
|
|
/* Disable the I2S DMA Tx request */
|
|
hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
}
|
|
else if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
|
|
{
|
|
/* Disable the I2S DMA Rx request */
|
|
hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
}
|
|
else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
|
|
{
|
|
if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX))
|
|
{
|
|
/* Disable the I2S DMA Tx request */
|
|
hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
/* Disable the I2SEx Rx DMA Request */
|
|
I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
}
|
|
else
|
|
{
|
|
/* Disable the I2S DMA Rx request */
|
|
hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
/* Disable the I2SEx Tx DMA Request */
|
|
I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
}
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Resumes the audio stream playing from the Media.
|
|
* @param hi2s: I2S handle
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hi2s);
|
|
|
|
if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
|
|
{
|
|
/* Enable the I2S DMA Tx request */
|
|
hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;
|
|
}
|
|
else if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
|
|
{
|
|
/* Enable the I2S DMA Rx request */
|
|
hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;
|
|
}
|
|
else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
|
|
{
|
|
if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX))
|
|
{
|
|
/* Enable the I2S DMA Tx request */
|
|
hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;
|
|
/* Disable the I2SEx Rx DMA Request */
|
|
I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_RXDMAEN;
|
|
}
|
|
else
|
|
{
|
|
/* Enable the I2S DMA Rx request */
|
|
hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;
|
|
/* Enable the I2SEx Tx DMA Request */
|
|
I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_TXDMAEN;
|
|
}
|
|
}
|
|
|
|
/* If the I2S peripheral is still not enabled, enable it */
|
|
if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) == 0)
|
|
{
|
|
/* Enable I2S peripheral */
|
|
__HAL_I2S_ENABLE(hi2s);
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Resumes the audio stream playing from the Media.
|
|
* @param hi2s: I2S handle
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hi2s);
|
|
|
|
/* Disable the I2S Tx/Rx DMA requests */
|
|
hi2s->Instance->CR2 &= ~SPI_CR2_TXDMAEN;
|
|
hi2s->Instance->CR2 &= ~SPI_CR2_RXDMAEN;
|
|
|
|
if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
|
|
{
|
|
/* Disable the I2S extended Tx/Rx DMA requests */
|
|
I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
}
|
|
|
|
/* Abort the I2S DMA Stream tx */
|
|
if(hi2s->hdmatx != NULL)
|
|
{
|
|
HAL_DMA_Abort(hi2s->hdmatx);
|
|
}
|
|
/* Abort the I2S DMA Stream rx */
|
|
if(hi2s->hdmarx != NULL)
|
|
{
|
|
HAL_DMA_Abort(hi2s->hdmarx);
|
|
}
|
|
|
|
/* Disable I2S peripheral */
|
|
__HAL_I2S_DISABLE(hi2s);
|
|
|
|
if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
|
|
{
|
|
/* Disable the I2Sext peripheral */
|
|
I2SxEXT(hi2s->Instance)->I2SCFGR &= ~SPI_I2SCFGR_I2SE;
|
|
}
|
|
|
|
hi2s->State = HAL_I2S_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles I2S interrupt request.
|
|
* @param hi2s: I2S handle
|
|
* @retval HAL status
|
|
*/
|
|
void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
uint32_t tmp1 = 0, tmp2 = 0;
|
|
if(hi2s->Init.FullDuplexMode != I2S_FULLDUPLEXMODE_ENABLE)
|
|
{
|
|
if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
|
|
{
|
|
tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE);
|
|
tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE);
|
|
/* I2S in mode Receiver ------------------------------------------------*/
|
|
if((tmp1 != RESET) && (tmp2 != RESET))
|
|
{
|
|
I2S_Receive_IT(hi2s);
|
|
}
|
|
|
|
tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR);
|
|
tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
|
|
/* I2S Overrun error interrupt occured ---------------------------------*/
|
|
if((tmp1 != RESET) && (tmp2 != RESET))
|
|
{
|
|
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
|
|
hi2s->ErrorCode |= HAL_I2S_ERROR_OVR;
|
|
}
|
|
}
|
|
|
|
if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
|
|
{
|
|
tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE);
|
|
tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE);
|
|
/* I2S in mode Tramitter -----------------------------------------------*/
|
|
if((tmp1 != RESET) && (tmp2 != RESET))
|
|
{
|
|
I2S_Transmit_IT(hi2s);
|
|
}
|
|
|
|
tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR);
|
|
tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
|
|
/* I2S Underrun error interrupt occured --------------------------------*/
|
|
if((tmp1 != RESET) && (tmp2 != RESET))
|
|
{
|
|
__HAL_I2S_CLEAR_UDRFLAG(hi2s);
|
|
hi2s->ErrorCode |= HAL_I2S_ERROR_UDR;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
/* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
|
|
if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
|
|
{
|
|
tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_RXNE;
|
|
tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_RXNE;
|
|
/* I2Sext in mode Receiver ---------------------------------------------*/
|
|
if((tmp1 == SPI_SR_RXNE) && (tmp2 == I2S_IT_RXNE))
|
|
{
|
|
tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
/* When the I2S mode is configured as I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX,
|
|
the I2Sext RXNE interrupt will be generated to manage the full-duplex receive phase. */
|
|
if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
|
|
{
|
|
I2SEx_TransmitReceive_IT(hi2s);
|
|
}
|
|
}
|
|
|
|
tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_OVR;
|
|
tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_ERR;
|
|
/* I2Sext Overrun error interrupt occured ------------------------------*/
|
|
if((tmp1 == SPI_SR_OVR) && (tmp2 == I2S_IT_ERR))
|
|
{
|
|
/* Clear I2Sext OVR Flag */
|
|
I2SxEXT(hi2s->Instance)->DR;
|
|
I2SxEXT(hi2s->Instance)->SR;
|
|
hi2s->ErrorCode |= HAL_I2SEX_ERROR_OVR;
|
|
}
|
|
|
|
tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE);
|
|
tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE);
|
|
/* I2S in mode Tramitter -----------------------------------------------*/
|
|
if((tmp1 != RESET) && (tmp2 != RESET))
|
|
{
|
|
tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
/* When the I2S mode is configured as I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX,
|
|
the I2S TXE interrupt will be generated to manage the full-duplex transmit phase. */
|
|
if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
|
|
{
|
|
I2SEx_TransmitReceive_IT(hi2s);
|
|
}
|
|
}
|
|
|
|
tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR);
|
|
tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
|
|
/* I2S Underrun error interrupt occured --------------------------------*/
|
|
if((tmp1 != RESET) && (tmp2 != RESET))
|
|
{
|
|
__HAL_I2S_CLEAR_UDRFLAG(hi2s);
|
|
hi2s->ErrorCode |= HAL_I2S_ERROR_UDR;
|
|
}
|
|
}
|
|
/* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */
|
|
else
|
|
{
|
|
tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE);
|
|
tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE);
|
|
/* I2S in mode Receiver ------------------------------------------------*/
|
|
if((tmp1 != RESET) && (tmp2 != RESET))
|
|
{
|
|
tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
/* When the I2S mode is configured as I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX,
|
|
the I2S RXNE interrupt will be generated to manage the full-duplex receive phase. */
|
|
if((tmp1 == I2S_MODE_MASTER_RX) || (tmp2 == I2S_MODE_SLAVE_RX))
|
|
{
|
|
I2SEx_TransmitReceive_IT(hi2s);
|
|
}
|
|
}
|
|
|
|
tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR);
|
|
tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
|
|
/* I2S Overrun error interrupt occured ---------------------------------*/
|
|
if((tmp1 != RESET) && (tmp2 != RESET))
|
|
{
|
|
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
|
|
hi2s->ErrorCode |= HAL_I2S_ERROR_OVR;
|
|
}
|
|
|
|
tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_TXE;
|
|
tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_TXE;
|
|
/* I2Sext in mode Tramitter --------------------------------------------*/
|
|
if((tmp1 == SPI_SR_TXE) && (tmp2 == I2S_IT_TXE))
|
|
{
|
|
tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
|
|
/* When the I2S mode is configured as I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX,
|
|
the I2Sext TXE interrupt will be generated to manage the full-duplex transmit phase. */
|
|
if((tmp1 == I2S_MODE_MASTER_RX) || (tmp2 == I2S_MODE_SLAVE_RX))
|
|
{
|
|
I2SEx_TransmitReceive_IT(hi2s);
|
|
}
|
|
}
|
|
|
|
tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_UDR;
|
|
tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_ERR;
|
|
/* I2Sext Underrun error interrupt occured -----------------------------*/
|
|
if((tmp1 == SPI_SR_UDR) && (tmp2 == I2S_IT_ERR))
|
|
{
|
|
/* Clear I2Sext UDR Flag */
|
|
I2SxEXT(hi2s->Instance)->SR;
|
|
hi2s->ErrorCode |= HAL_I2SEX_ERROR_UDR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Call the Error call Back in case of Errors */
|
|
if(hi2s->ErrorCode != HAL_I2S_ERROR_NONE)
|
|
{
|
|
/* Set the I2S state ready to be able to start again the process */
|
|
hi2s->State= HAL_I2S_STATE_READY;
|
|
HAL_I2S_ErrorCallback(hi2s);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Tx Transfer Half completed callbacks
|
|
* @param hi2s: I2S handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_I2S_TxHalfCpltCallback could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Tx Transfer completed callbacks
|
|
* @param hi2s: I2S handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_I2S_TxCpltCallback could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Rx Transfer half completed callbacks
|
|
* @param hi2s: I2S handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_I2S_RxCpltCallback could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Rx Transfer completed callbacks
|
|
* @param hi2s: I2S handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_I2S_RxCpltCallback could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief I2S error callbacks
|
|
* @param hi2s: I2S handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_I2S_ErrorCallback could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup I2S_Group3 Peripheral State and Errors functions
|
|
* @brief Peripheral State functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral State and Errors functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection permit to get in run-time the status of the peripheral
|
|
and the data flow.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Return the I2S state
|
|
* @param hi2s : I2S handle
|
|
* @retval HAL state
|
|
*/
|
|
HAL_I2S_StateTypeDef HAL_I2S_GetState(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
return hi2s->State;
|
|
}
|
|
|
|
/**
|
|
* @brief Return the I2S error code
|
|
* @param hi2s : I2S handle
|
|
* @retval I2S Error Code
|
|
*/
|
|
HAL_I2S_ErrorTypeDef HAL_I2S_GetError(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
return hi2s->ErrorCode;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @brief DMA I2S transmit process complete callback
|
|
* @param hdma : DMA handle
|
|
* @retval None
|
|
*/
|
|
void I2S_DMATxCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
|
|
|
if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
|
|
{
|
|
hi2s->TxXferCount = 0;
|
|
|
|
/* Disable Tx DMA Request */
|
|
hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
|
|
if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
|
|
{
|
|
/* Disable Rx DMA Request for the slave*/
|
|
I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
}
|
|
|
|
if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
|
|
{
|
|
if(hi2s->RxXferCount == 0)
|
|
{
|
|
hi2s->State = HAL_I2S_STATE_READY;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hi2s->State = HAL_I2S_STATE_READY;
|
|
}
|
|
}
|
|
HAL_I2S_TxCpltCallback(hi2s);
|
|
}
|
|
|
|
/**
|
|
* @brief DMA I2S transmit process half complete callback
|
|
* @param hdma : DMA handle
|
|
* @retval None
|
|
*/
|
|
void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
|
|
|
HAL_I2S_TxHalfCpltCallback(hi2s);
|
|
}
|
|
|
|
/**
|
|
* @brief DMA I2S receive process complete callback
|
|
* @param hdma : DMA handle
|
|
* @retval None
|
|
*/
|
|
void I2S_DMARxCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
|
|
|
if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
|
|
{
|
|
/* Disable Rx DMA Request */
|
|
hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
|
|
if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
|
|
{
|
|
/* Disable Tx DMA Request for the slave*/
|
|
I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
}
|
|
|
|
hi2s->RxXferCount = 0;
|
|
if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
|
|
{
|
|
if(hi2s->TxXferCount == 0)
|
|
{
|
|
hi2s->State = HAL_I2S_STATE_READY;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hi2s->State = HAL_I2S_STATE_READY;
|
|
}
|
|
}
|
|
HAL_I2S_RxCpltCallback(hi2s);
|
|
}
|
|
|
|
/**
|
|
* @brief DMA I2S receive process half complete callback
|
|
* @param hdma : DMA handle
|
|
* @retval None
|
|
*/
|
|
void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
|
|
|
HAL_I2S_RxHalfCpltCallback(hi2s);
|
|
}
|
|
|
|
/**
|
|
* @brief DMA I2S communication error callback
|
|
* @param hdma : DMA handle
|
|
* @retval None
|
|
*/
|
|
void I2S_DMAError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
|
|
|
hi2s->TxXferCount = 0;
|
|
hi2s->RxXferCount = 0;
|
|
|
|
hi2s->State= HAL_I2S_STATE_READY;
|
|
|
|
hi2s->ErrorCode |= HAL_I2S_ERROR_DMA;
|
|
HAL_I2S_ErrorCallback(hi2s);
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit an amount of data in non-blocking mode with Interrupt
|
|
* @param hi2s: I2S handle
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef I2S_Transmit_IT(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hi2s);
|
|
|
|
/* Transmit data */
|
|
hi2s->Instance->DR = (*hi2s->pTxBuffPtr++);
|
|
|
|
hi2s->TxXferCount--;
|
|
|
|
if(hi2s->TxXferCount == 0)
|
|
{
|
|
/* Disable TXE and ERR interrupt */
|
|
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
|
|
|
|
hi2s->State = HAL_I2S_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
HAL_I2S_TxCpltCallback(hi2s);
|
|
}
|
|
else
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in non-blocking mode with Interrupt
|
|
* @param hi2s: I2S handle
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef I2S_Receive_IT(I2S_HandleTypeDef *hi2s)
|
|
{
|
|
if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hi2s);
|
|
|
|
/* Receive data */
|
|
(*hi2s->pRxBuffPtr++) = hi2s->Instance->DR;
|
|
|
|
hi2s->RxXferCount--;
|
|
|
|
/* Check if Master Receiver mode is selected */
|
|
if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
|
|
{
|
|
/* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read
|
|
access to the SPI_SR register. */
|
|
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
|
|
}
|
|
|
|
if(hi2s->RxXferCount == 0)
|
|
{
|
|
/* Disable RXNE and ERR interrupt */
|
|
__HAL_I2S_DISABLE_IT(hi2s, I2S_IT_RXNE | I2S_IT_ERR);
|
|
|
|
hi2s->State = HAL_I2S_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
HAL_I2S_RxCpltCallback(hi2s);
|
|
}
|
|
else
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles I2S Communication Timeout.
|
|
* @param hi2s: I2S handle
|
|
* @param Flag: Flag checked
|
|
* @param State: Value of the flag expected
|
|
* @param Timeout: Duration of the timeout
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, uint32_t Status, uint32_t Timeout)
|
|
{
|
|
uint32_t timeout = 0;
|
|
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
/* Wait until flag is set */
|
|
if(Status == RESET)
|
|
{
|
|
while(__HAL_I2S_GET_FLAG(hi2s, Flag) == RESET)
|
|
{
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Set the I2S State ready */
|
|
hi2s->State= HAL_I2S_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while(__HAL_I2S_GET_FLAG(hi2s, Flag) != RESET)
|
|
{
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Set the I2S State ready */
|
|
hi2s->State= HAL_I2S_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hi2s);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_I2S_MODULE_ENABLED */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|