Damien George 9988618e0e py: Implement full func arg passing for native emitter.
This patch gets full function argument passing working with native
emitter.  Includes named args, keyword args, default args, var args
and var keyword args.  Fully Python compliant.

It reuses the bytecode mp_setup_code_state function to do all the hard
work.  This function is slightly adjusted to accommodate native calls,
and the native emitter is forced a bit to emit similar prelude and
code-info as bytecode.
2015-04-07 22:43:28 +01:00

249 lines
10 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014 Damien P. George
* Copyright (c) 2014 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include "py/nlr.h"
#include "py/objfun.h"
#include "py/bc.h"
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#else // don't print debugging info
#define DEBUG_PRINT (0)
#define DEBUG_printf(...) (void)0
#endif
mp_uint_t mp_decode_uint(const byte **ptr) {
mp_uint_t unum = 0;
byte val;
const byte *p = *ptr;
do {
val = *p++;
unum = (unum << 7) | (val & 0x7f);
} while ((val & 0x80) != 0);
*ptr = p;
return unum;
}
STATIC NORETURN void fun_pos_args_mismatch(mp_obj_fun_bc_t *f, mp_uint_t expected, mp_uint_t given) {
#if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE
// generic message, used also for other argument issues
mp_arg_error_terse_mismatch();
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function takes %d positional arguments but %d were given", expected, given));
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_DETAILED
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"%s() takes %d positional arguments but %d were given",
qstr_str(mp_obj_fun_get_name(f)), expected, given));
#endif
}
#if DEBUG_PRINT
STATIC void dump_args(const mp_obj_t *a, mp_uint_t sz) {
DEBUG_printf("%p: ", a);
for (mp_uint_t i = 0; i < sz; i++) {
DEBUG_printf("%p ", a[i]);
}
DEBUG_printf("\n");
}
#else
#define dump_args(...) (void)0
#endif
// On entry code_state should be allocated somewhere (stack/heap) and
// contain the following valid entries:
// - code_state->code_info should be the offset in bytes from the start of
// the bytecode chunk to the start of the code-info within the bytecode
// - code_state->ip should contain the offset in bytes from the start of
// the bytecode chunk to the start of the prelude within the bytecode
// - code_state->n_state should be set to the state size (locals plus stack)
void mp_setup_code_state(mp_code_state *code_state, mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// This function is pretty complicated. It's main aim is to be efficient in speed and RAM
// usage for the common case of positional only args.
mp_obj_fun_bc_t *self = self_in;
mp_uint_t n_state = code_state->n_state;
#if MICROPY_STACKLESS
code_state->prev = NULL;
#endif
code_state->code_info = self->bytecode + (mp_uint_t)code_state->code_info;
code_state->sp = &code_state->state[0] - 1;
code_state->exc_sp = (mp_exc_stack_t*)(code_state->state + n_state) - 1;
// zero out the local stack to begin with
memset(code_state->state, 0, n_state * sizeof(*code_state->state));
const mp_obj_t *kwargs = args + n_args;
// var_pos_kw_args points to the stack where the var-args tuple, and var-kw dict, should go (if they are needed)
mp_obj_t *var_pos_kw_args = &code_state->state[n_state - 1 - self->n_pos_args - self->n_kwonly_args];
// check positional arguments
if (n_args > self->n_pos_args) {
// given more than enough arguments
if (!self->takes_var_args) {
fun_pos_args_mismatch(self, self->n_pos_args, n_args);
}
// put extra arguments in varargs tuple
*var_pos_kw_args-- = mp_obj_new_tuple(n_args - self->n_pos_args, args + self->n_pos_args);
n_args = self->n_pos_args;
} else {
if (self->takes_var_args) {
DEBUG_printf("passing empty tuple as *args\n");
*var_pos_kw_args-- = mp_const_empty_tuple;
}
// Apply processing and check below only if we don't have kwargs,
// otherwise, kw handling code below has own extensive checks.
if (n_kw == 0 && !self->has_def_kw_args) {
if (n_args >= (mp_uint_t)(self->n_pos_args - self->n_def_args)) {
// given enough arguments, but may need to use some default arguments
for (mp_uint_t i = n_args; i < self->n_pos_args; i++) {
code_state->state[n_state - 1 - i] = self->extra_args[i - (self->n_pos_args - self->n_def_args)];
}
} else {
fun_pos_args_mismatch(self, self->n_pos_args - self->n_def_args, n_args);
}
}
}
// copy positional args into state
for (mp_uint_t i = 0; i < n_args; i++) {
code_state->state[n_state - 1 - i] = args[i];
}
// check keyword arguments
if (n_kw != 0 || self->has_def_kw_args) {
DEBUG_printf("Initial args: ");
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
mp_obj_t dict = MP_OBJ_NULL;
if (self->takes_kw_args) {
dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0?
*var_pos_kw_args = dict;
}
// get pointer to arg_names array at start of bytecode prelude
const mp_obj_t *arg_names;
{
const byte *code_info = code_state->code_info;
mp_uint_t code_info_size = mp_decode_uint(&code_info);
arg_names = (const mp_obj_t*)(code_state->code_info + code_info_size);
}
for (mp_uint_t i = 0; i < n_kw; i++) {
mp_obj_t wanted_arg_name = kwargs[2 * i];
for (mp_uint_t j = 0; j < self->n_pos_args + self->n_kwonly_args; j++) {
if (wanted_arg_name == arg_names[j]) {
if (code_state->state[n_state - 1 - j] != MP_OBJ_NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function got multiple values for argument '%s'", qstr_str(MP_OBJ_QSTR_VALUE(wanted_arg_name))));
}
code_state->state[n_state - 1 - j] = kwargs[2 * i + 1];
goto continue2;
}
}
// Didn't find name match with positional args
if (!self->takes_kw_args) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
}
mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]);
continue2:;
}
DEBUG_printf("Args with kws flattened: ");
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
// fill in defaults for positional args
mp_obj_t *d = &code_state->state[n_state - self->n_pos_args];
mp_obj_t *s = &self->extra_args[self->n_def_args - 1];
for (mp_uint_t i = self->n_def_args; i > 0; i--, d++, s--) {
if (*d == MP_OBJ_NULL) {
*d = *s;
}
}
DEBUG_printf("Args after filling default positional: ");
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
// Check that all mandatory positional args are specified
while (d < &code_state->state[n_state]) {
if (*d++ == MP_OBJ_NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function missing required positional argument #%d", &code_state->state[n_state] - d));
}
}
// Check that all mandatory keyword args are specified
// Fill in default kw args if we have them
for (mp_uint_t i = 0; i < self->n_kwonly_args; i++) {
if (code_state->state[n_state - 1 - self->n_pos_args - i] == MP_OBJ_NULL) {
mp_map_elem_t *elem = NULL;
if (self->has_def_kw_args) {
elem = mp_map_lookup(&((mp_obj_dict_t*)self->extra_args[self->n_def_args])->map, arg_names[self->n_pos_args + i], MP_MAP_LOOKUP);
}
if (elem != NULL) {
code_state->state[n_state - 1 - self->n_pos_args - i] = elem->value;
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function missing required keyword argument '%s'", qstr_str(MP_OBJ_QSTR_VALUE(arg_names[self->n_pos_args + i]))));
}
}
}
} else {
// no keyword arguments given
if (self->n_kwonly_args != 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"function missing keyword-only argument"));
}
if (self->takes_kw_args) {
*var_pos_kw_args = mp_obj_new_dict(0);
}
}
// bytecode prelude: initialise closed over variables
const byte *ip = self->bytecode + (mp_uint_t)code_state->ip;
mp_uint_t local_num;
while ((local_num = *ip++) != 255) {
code_state->state[n_state - 1 - local_num] =
mp_obj_new_cell(code_state->state[n_state - 1 - local_num]);
}
// now that we skipped over the prelude, set the ip for the VM
code_state->ip = ip;
DEBUG_printf("Calling: n_pos_args=%d, n_kwonly_args=%d\n", self->n_pos_args, self->n_kwonly_args);
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
dump_args(code_state->state, n_state);
}