circuitpython/ports/mimxrt10xx/supervisor/port.c
Scott Shawcroft a9dc31a881
Add additional iMX RT support
This adds a script to generate the peripherals files (except clock).

It adds support for the 1015, 1020, 1040, and 1050 EVKs.

Some work was started on 1176 but it isn't working. So, the board
def is in a separate branch.

Fixes #3521. Fixes #2477.
2023-04-28 11:01:13 -07:00

650 lines
21 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Scott Shawcroft for Adafruit Industries
* Copyright (c) 2020 Artur Pacholec
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* Copyright 2018 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "supervisor/board.h"
#include "supervisor/port.h"
#include "fsl_device_registers.h"
#if CIRCUITPY_AUDIOBUSIO
#include "common-hal/audiobusio/__init__.h"
#endif
#include "common-hal/microcontroller/Pin.h"
#include "common-hal/pwmio/PWMOut.h"
#include "common-hal/rtc/RTC.h"
#include "common-hal/busio/SPI.h"
#include "shared-bindings/microcontroller/__init__.h"
#if CIRCUITPY_PEW
#include "shared-module/_pew/PewPew.h"
#endif
#include "reset.h"
#include "supervisor/background_callback.h"
#include "supervisor/linker.h"
#include "supervisor/shared/tick.h"
#include "clocks.h"
#include "sdk/drivers/igpio/fsl_gpio.h"
#include "sdk/drivers/lpuart/fsl_lpuart.h"
// Device memories must be accessed in order.
#define DEVICE 2
// Normal memory can have accesses reorder and prefetched.
#define NORMAL 0
// Prevents instruction access.
#define NO_EXECUTION 1
#define EXECUTION 0
// Shareable if the memory system manages coherency. This means shared between memory bus masters,
// not just CPUs.
#define NOT_SHAREABLE 0
#define SHAREABLE 1
//
#define NOT_CACHEABLE 0
#define CACHEABLE 1
#define NOT_BUFFERABLE 0
#define BUFFERABLE 1
#define NO_SUBREGIONS 0
extern uint32_t _ld_flash_size;
extern uint32_t _ld_stack_top;
extern uint32_t __isr_vector[];
extern uint32_t _ld_ocram_start;
extern uint32_t _ld_ocram_bss_start;
extern uint32_t _ld_ocram_bss_size;
extern uint32_t _ld_ocram_data_destination;
extern uint32_t _ld_ocram_data_size;
extern uint32_t _ld_ocram_data_flash_copy;
extern uint32_t _ld_ocram_end;
extern uint32_t _ld_dtcm_bss_start;
extern uint32_t _ld_dtcm_bss_size;
extern uint32_t _ld_dtcm_data_destination;
extern uint32_t _ld_dtcm_data_size;
extern uint32_t _ld_dtcm_data_flash_copy;
extern uint32_t _ld_itcm_destination;
extern uint32_t _ld_itcm_size;
extern uint32_t _ld_itcm_flash_copy;
extern uint32_t _ld_isr_destination;
extern uint32_t _ld_isr_size;
extern uint32_t _ld_isr_flash_copy;
extern void main(void);
// This replaces the Reset_Handler in startup_*.S and SystemInit in system_*.c.
// Turn off optimize("no-tree-loop-distribute-patterns") so that this isn't replaced
// by calls to memcpy because we're copying it over now.
void Reset_Handler(void);
__attribute__((used, naked, no_instrument_function, optimize("no-tree-loop-distribute-patterns"))) void Reset_Handler(void) {
__disable_irq();
// Set the VTOR to the flash copy since we haven't copied it into RAM.
SCB->VTOR = (uint32_t)&_ld_isr_flash_copy;
__set_MSP((uint32_t)&_ld_stack_top);
// Turn off any residual ITM outputs.
ITM->TER = 0;
/* Disable I cache and D cache */
SCB_DisableICache();
SCB_DisableDCache();
// Changing the FlexRAM must happen here where the stack is empty. If it is in a function call,
// then the return will jump to an invalid address.
// Configure FlexRAM. The e is one block of ITCM (0b11) and DTCM (0b10). The rest is two OCRAM
// (0b01). We shift in zeroes for all unimplemented banks.
uint32_t flexram_config = (0xe5555555) >> (32 - 2 * FSL_FEATURE_FLEXRAM_INTERNAL_RAM_TOTAL_BANK_NUMBERS);
// imxrt1176 splits the config across two registers.
#ifdef IOMUXC_GPR_GPR17_FLEXRAM_BANK_CFG_LOW_MASK
IOMUXC_GPR->GPR17 = flexram_config & IOMUXC_GPR_GPR17_FLEXRAM_BANK_CFG_LOW_MASK;
IOMUXC_GPR->GPR18 = (flexram_config >> 16) & IOMUXC_GPR_GPR18_FLEXRAM_BANK_CFG_HIGH_MASK;
#else
IOMUXC_GPR->GPR17 = flexram_config;
#endif
// Switch from FlexRAM fuse config to the IOMUXC values.
IOMUXC_GPR->GPR16 |= IOMUXC_GPR_GPR16_FLEXRAM_BANK_CFG_SEL(1);
// Let the core know the TCM sizes changed.
#ifdef IOMUXC_GPR_GPR14_CM7_CFGDTCMSZ_MASK
uint32_t current_gpr14 = IOMUXC_GPR->GPR14;
current_gpr14 &= ~IOMUXC_GPR_GPR14_CM7_CFGDTCMSZ_MASK;
current_gpr14 |= IOMUXC_GPR_GPR14_CM7_CFGDTCMSZ(0x6);
current_gpr14 &= ~IOMUXC_GPR_GPR14_CM7_CFGITCMSZ_MASK;
current_gpr14 |= IOMUXC_GPR_GPR14_CM7_CFGITCMSZ(0x6);
IOMUXC_GPR->GPR14 = current_gpr14;
#endif
// Enable FlexRAM interrupts on invalid access.
FLEXRAM->INT_STAT_EN = FLEXRAM_INT_STAT_EN_ITCM_ERR_STAT_EN(1) |
FLEXRAM_INT_STAT_EN_DTCM_ERR_STAT_EN(1) |
FLEXRAM_INT_STAT_EN_OCRAM_ERR_STAT_EN(1);
#if ((__FPU_PRESENT == 1) && (__FPU_USED == 1))
SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); /* set CP10, CP11 Full Access */
#endif /* ((__FPU_PRESENT == 1) && (__FPU_USED == 1)) */
/* Disable Watchdog Power Down Counter */
#if defined(RTWDOG)
WDOG1->WMCR &= ~WDOG_WMCR_PDE_MASK;
WDOG2->WMCR &= ~WDOG_WMCR_PDE_MASK;
/* Watchdog disable */
WDOG1->WCR &= ~WDOG_WCR_WDE_MASK;
WDOG2->WCR &= ~WDOG_WCR_WDE_MASK;
RTWDOG->CNT = 0xD928C520U; /* 0xD928C520U is the update key */
RTWDOG->TOVAL = 0xFFFF;
RTWDOG->CS = (uint32_t)((RTWDOG->CS) & ~RTWDOG_CS_EN_MASK) | RTWDOG_CS_UPDATE_MASK;
#endif
#if defined(RTWDOG3)
if ((WDOG1->WCR & WDOG_WCR_WDE_MASK) != 0U) {
WDOG1->WCR &= ~(uint16_t)WDOG_WCR_WDE_MASK;
}
if ((WDOG2->WCR & WDOG_WCR_WDE_MASK) != 0U) {
WDOG2->WCR &= ~(uint16_t)WDOG_WCR_WDE_MASK;
}
if ((RTWDOG3->CS & RTWDOG_CS_CMD32EN_MASK) != 0U) {
RTWDOG3->CNT = 0xD928C520U; /* 0xD928C520U is the update key */
} else {
RTWDOG3->CNT = 0xC520U;
RTWDOG3->CNT = 0xD928U;
}
RTWDOG3->TOVAL = 0xFFFF;
RTWDOG3->CS = (uint32_t)((RTWDOG3->CS) & ~RTWDOG_CS_EN_MASK) | RTWDOG_CS_UPDATE_MASK;
if ((RTWDOG4->CS & RTWDOG_CS_CMD32EN_MASK) != 0U) {
RTWDOG4->CNT = 0xD928C520U; /* 0xD928C520U is the update key */
} else {
RTWDOG4->CNT = 0xC520U;
RTWDOG4->CNT = 0xD928U;
}
RTWDOG4->TOVAL = 0xFFFF;
RTWDOG4->CS = (uint32_t)((RTWDOG4->CS) & ~RTWDOG_CS_EN_MASK) | RTWDOG_CS_UPDATE_MASK;
#endif
/* Disable Systick which might be enabled by bootrom */
if (SysTick->CTRL & SysTick_CTRL_ENABLE_Msk) {
SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;
}
/* Disable MPU */
ARM_MPU_Disable();
// Copy all of the itcm code to run from ITCM. Do this while the MPU is disabled because we write
// protect it.
for (uint32_t i = 0; i < ((size_t)&_ld_itcm_size) / 4; i++) {
(&_ld_itcm_destination)[i] = (&_ld_itcm_flash_copy)[i];
}
for (uint32_t i = 0; i < ((size_t)&_ld_isr_size) / 4; i++) {
(&_ld_isr_destination)[i] = (&_ld_isr_flash_copy)[i];
}
// Now that we've copied the ISR table over, use that VTOR.
SCB->VTOR = (uint32_t)&_ld_isr_destination;
// The first number in RBAR is the region number. When searching for a policy, the region with
// the highest number wins. If none match, then the default policy set at enable applies.
// This is an undocumented region and is likely more registers.
MPU->RBAR = ARM_MPU_RBAR(8, 0xC0000000U);
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, DEVICE, NOT_SHAREABLE, NOT_CACHEABLE, NOT_BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_512MB);
// This is the SEMC region where external RAM and 8+ flash would live. Disable for now, even though the EVKs have stuff here.
MPU->RBAR = ARM_MPU_RBAR(9, 0x80000000U);
MPU->RASR = ARM_MPU_RASR(NO_EXECUTION, ARM_MPU_AP_NONE, DEVICE, NOT_SHAREABLE, NOT_CACHEABLE, NOT_BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_1GB);
// FlexSPI2 is 0x70000000
// This the first portion (1MB, 2MB or 4MB) of flash is the bootloader and CircuitPython read-only data.
#if !defined(FlexSPI_AMBA_BASE)
#define FlexSPI_AMBA_BASE FlexSPI1_AMBA_BASE
#endif
MPU->RBAR = ARM_MPU_RBAR(10, FlexSPI_AMBA_BASE);
uint32_t region_size = ARM_MPU_REGION_SIZE_32B;
uint32_t code_size = ((uint32_t)&_ld_filesystem_start) - FlexSPI_AMBA_BASE;
while (code_size > (1u << (region_size + 1))) {
region_size += 1;
}
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, region_size);
// The remainder of flash is the fat filesystem which could have code on it too. Make sure that
// we set the region to the minimal size so that bad data doesn't get speculatively fetched.
// Thanks to Damien for the tip!
region_size = ARM_MPU_REGION_SIZE_32B;
uint32_t filesystem_size = &_ld_filesystem_end - &_ld_filesystem_start;
while (filesystem_size > (1u << (region_size + 1))) {
region_size += 1;
}
// Mask out as much of the remainder as we can. For example on an 8MB flash, 7MB are for the
// filesystem. The region_size here must be a power of 2 so it is 8MB. Using the subregion mask
// we can ignore 1/8th size chunks. So, we ignore the last 1MB using the subregion.
uint32_t remainder = (1u << (region_size + 1)) - filesystem_size;
uint32_t subregion_size = (1u << (region_size + 1)) / 8;
uint8_t subregion_mask = (0xff00 >> (remainder / subregion_size)) & 0xff;
MPU->RBAR = ARM_MPU_RBAR(11, (size_t)&_ld_filesystem_start);
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, subregion_mask, region_size);
// This the ITCM. Set it to read-only because we've loaded everything already and it's easy to
// accidentally write the wrong value to 0x00000000 (aka NULL).
MPU->RBAR = ARM_MPU_RBAR(12, 0x00000000U);
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_RO, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_32KB);
// This the DTCM.
MPU->RBAR = ARM_MPU_RBAR(13, 0x20000000U);
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_32KB);
// This is OCRAM. We mark it as shareable so that it isn't cached. This makes USB work at the
// cost of 1/4 speed OCRAM accesses. It will leave more room for caching data from the flash
// too which might be a net win.
MPU->RBAR = ARM_MPU_RBAR(14, ((uint32_t)&_ld_ocram_start));
MPU->RASR = ARM_MPU_RASR(NO_EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_512KB);
#if IMXRT10XX
// We steal 64k from FlexRAM for ITCM and DTCM so disable those memory regions here.
// We use 64k from FlexRAM for ITCM and DTCM so disable those memory regions here.
MPU->RBAR = ARM_MPU_RBAR(15, ((uint32_t)&_ld_ocram_end));
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, 0x80, ARM_MPU_REGION_SIZE_512KB);
#else
// On the iMX RT 11xx OCRAM is not flexram (for now). So no need to mask it off.
#endif
/* Enable MPU */
ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA_Msk);
/* We're done mucking with memory so enable I cache and D cache */
SCB_EnableDCache();
SCB_EnableICache();
// Copy all of the data to run from DTCM.
for (uint32_t i = 0; i < ((size_t)&_ld_dtcm_data_size) / 4; i++) {
(&_ld_dtcm_data_destination)[i] = (&_ld_dtcm_data_flash_copy)[i];
}
// Clear DTCM bss.
for (uint32_t i = 0; i < ((size_t)&_ld_dtcm_bss_size) / 4; i++) {
(&_ld_dtcm_bss_start)[i] = 0;
}
// Copy all of the data to run from OCRAM.
for (uint32_t i = 0; i < ((size_t)&_ld_ocram_data_size) / 4; i++) {
(&_ld_ocram_data_destination)[i] = (&_ld_ocram_data_flash_copy)[i];
}
// Clear OCRAM bss.
for (uint32_t i = 0; i < ((size_t)&_ld_ocram_bss_size) / 4; i++) {
(&_ld_ocram_bss_start)[i] = 0;
}
__enable_irq();
main();
}
void __attribute__((no_instrument_function,section(".itcm.profile_enter"),long_call)) __cyg_profile_func_enter(void *this_fn,
void *call_site) {
if ((ITM->TER & (1 << 3)) == 0) {
return;
}
uint32_t addr = (uint32_t)this_fn;
while (ITM->PORT[3U].u32 == 0UL) {
// addr |= 1;
}
ITM->PORT[3].u32 = addr;
}
void __attribute__((no_instrument_function,section(".itcm.profile_exit"),long_call)) __cyg_profile_func_exit(void *this_fn,
void *call_site) {
if ((ITM->TER & (1 << 4)) == 0) {
return;
}
uint32_t addr = (uint32_t)this_fn;
while (ITM->PORT[4U].u32 == 0UL) {
// addr |= 1;
}
ITM->PORT[4].u32 = addr;
}
safe_mode_t port_init(void) {
#if IMXRT10XX
CLOCK_SetMode(kCLOCK_ModeRun);
#endif
clocks_init();
// Turn on the DWT so that neopixel_write can use CYCCNT for timing.
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
DWT->CTRL = 0x2 << DWT_CTRL_SYNCTAP_Pos | DWT_CTRL_CYCCNTENA_Msk;
// Enable SWO if needed.
#if CIRCUITPY_SWO_TRACE
// Turn on the 528 MHz clock to the TPIU.
CLOCK_EnableClock(kCLOCK_Trace); /* Make these edits*/
/* Set TRACE_PODF. */
CLOCK_SetDiv(kCLOCK_TraceDiv, 0); /* Make these edits*/
/* Set Trace clock source. */
CLOCK_SetMux(kCLOCK_TraceMux, 0); /* Make these edits*/
ITM->TCR = ITM_TCR_TSENA_Msk | ITM_TCR_ITMENA_Msk | ITM_TCR_SYNCENA_Msk | ITM_TCR_DWTENA_Msk;
// Run at 2.75 mbaud. CP2102N says it can do up to 3.
// Base clock is 528 mhz (not 500 like the core).
// TPI->ACPR = 191;
// Run at 1 mbaud so that USB isn't bottlenecked.
TPI->ACPR = 527;
TPI->SPPR = 0x2; // NRZ aka UART
TPI->FFCR = 0;
IOMUXC_SetPinMux( /* Add these lines*/
IOMUXC_GPIO_AD_09_ARM_TRACE_SWO,
0U);
IOMUXC_SetPinConfig( /* Add these lines*/
IOMUXC_GPIO_AD_09_ARM_TRACE_SWO,
0x00F9U);
// Enable ports 0-4:
// * 0 is serial output
// *
// * 3 is addresses of functions beginning.
// * 4 is addresses of functions ending.
ITM->TER |= 0x1f;
ITM->PORT[0].u8 = 'C';
ITM->PORT[0].u8 = 'P';
ITM->PORT[0].u8 = '\n';
#endif
// Set all peripheral interrupt priorities to the lowest priority by default.
for (uint16_t i = 0; i < NUMBER_OF_INT_VECTORS; i++) {
NVIC_SetPriority(i, (1UL << __NVIC_PRIO_BITS) - 1UL);
}
#ifdef MIMXRT1042_SERIES
#define USB_OTG1_IRQn USB_OTG_IRQn
#endif
NVIC_SetPriority(USB_OTG1_IRQn, 1);
#ifdef USBPHY2
NVIC_SetPriority(USB_OTG2_IRQn, 1);
#endif
NVIC_SetPriority(FLEXRAM_IRQn, 0);
NVIC_EnableIRQ(FLEXRAM_IRQn);
// Priorities 8+ will be disabled during flash operations. To run during
// flash operations, ensure all code is in RAM (not flash) and set the
// priority < 8.
#if CIRCUITPY_RTC
rtc_init();
#endif
// Always enable the SNVS interrupt. The GPC won't wake us up unless at least one interrupt is
// enabled. It won't occur very often so it'll be low overhead.
#if IMXRT11XX
NVIC_EnableIRQ(SNVS_HP_NON_TZ_IRQn);
#else
NVIC_EnableIRQ(SNVS_HP_WRAPPER_IRQn);
#endif
#if IMXRT11XX
/* Save SRSR to another register so we can read it later. */
SRC->GPR[11] = SRC->SRSR;
SRC->SRSR = 0xFFFFFFFFU;
if ((SRC->GPR[11] & SRC_SRSR_M7_LOCKUP_M7_MASK) != 0) {
return SAFE_MODE_HARD_FAULT;
}
#endif
// Note that `reset_port` CANNOT GO HERE, unlike other ports, because `board_init` hasn't been
// run yet, which uses `never_reset` to protect critical pins from being reset by `reset_port`.
if (board_requests_safe_mode()) {
return SAFE_MODE_USER;
}
return SAFE_MODE_NONE;
}
void reset_port(void) {
#if CIRCUITPY_BUSIO
spi_reset();
#endif
#if CIRCUITPY_AUDIOIO
audio_dma_reset();
audioout_reset();
#endif
#if CIRCUITPY_AUDIOBUSIO
i2s_reset();
#endif
#if CIRCUITPY_TOUCHIO && CIRCUITPY_TOUCHIO_USE_NATIVE
touchin_reset();
#endif
// eic_reset();
#if CIRCUITPY_PWMIO
reset_all_flexpwm();
#endif
#if CIRCUITPY_RTC
rtc_reset();
#endif
#if CIRCUITPY_PEW
pew_reset();
#endif
// reset_event_system();
reset_all_pins();
}
void reset_to_bootloader(void) {
DBL_TAP_REG = DBL_TAP_MAGIC;
reset();
}
void PLACE_IN_ITCM(reset_cpu)(void) {
reset();
}
extern uint32_t _ld_heap_start, _ld_heap_end, _ld_stack_top, _ld_stack_bottom;
uint32_t *port_stack_get_limit(void) {
return &_ld_stack_bottom;
}
uint32_t *port_stack_get_top(void) {
return &_ld_stack_top;
}
bool port_has_fixed_stack(void) {
return true;
}
uint32_t *port_heap_get_bottom(void) {
return &_ld_heap_start;
}
// Get heap top address
uint32_t *port_heap_get_top(void) {
return &_ld_heap_end;
}
// Place the word into the low power section of the SNVS.
void PLACE_IN_ITCM(port_set_saved_word)(uint32_t value) {
SNVS->LPGPR[1] = value;
}
uint32_t port_get_saved_word(void) {
return SNVS->LPGPR[1];
}
uint64_t port_get_raw_ticks(uint8_t *subticks) {
uint64_t ticks = 0;
uint64_t next_ticks = 1;
while (ticks != next_ticks) {
ticks = next_ticks;
next_ticks = ((uint64_t)SNVS->HPRTCMR) << 32 | SNVS->HPRTCLR;
}
if (subticks != NULL) {
*subticks = ticks % 32;
}
return ticks / 32;
}
#if IMXRT10XX
void SNVS_HP_WRAPPER_IRQHandler(void);
__attribute__((used))
void PLACE_IN_ITCM(SNVS_HP_WRAPPER_IRQHandler)(void) {
#else
void SNVS_HP_NON_TZ_IRQHandler(void);
__attribute__((used))
void PLACE_IN_ITCM(SNVS_HP_NON_TZ_IRQHandler)(void) {
#endif
if ((SNVS->HPSR & SNVS_HPSR_PI_MASK) != 0) {
supervisor_tick();
SNVS->HPSR = SNVS_HPSR_PI_MASK;
}
if ((SNVS->HPSR & SNVS_HPSR_HPTA_MASK) != 0) {
SNVS->HPSR = SNVS_HPSR_HPTA_MASK;
}
}
// Enable 1/1024 second tick.
void port_enable_tick(void) {
uint32_t hpcr = SNVS->HPCR;
hpcr &= ~SNVS_HPCR_PI_FREQ_MASK;
SNVS->HPCR = hpcr | SNVS_HPCR_PI_FREQ(5) | SNVS_HPCR_PI_EN_MASK;
}
// Disable 1/1024 second tick.
void port_disable_tick(void) {
SNVS->HPCR &= ~SNVS_HPCR_PI_EN_MASK;
}
void port_interrupt_after_ticks(uint32_t ticks) {
uint8_t subticks;
uint64_t current_ticks = port_get_raw_ticks(&subticks);
current_ticks += ticks;
SNVS->HPCR &= ~SNVS_HPCR_HPTA_EN_MASK;
// Wait for the alarm to be disabled.
while ((SNVS->HPCR & SNVS_HPCR_HPTA_EN_MASK) != 0) {
}
SNVS->HPTAMR = current_ticks >> (32 - 5);
SNVS->HPTALR = current_ticks << 5 | subticks;
SNVS->HPCR |= SNVS_HPCR_HPTA_EN_MASK;
}
void port_idle_until_interrupt(void) {
// App note here: https://www.nxp.com/docs/en/application-note/AN12085.pdf
// Currently I have disabled the setting into wait mode as this impacts lots of different
// subsystems and it is unclear if you can or should set it generically without having
// a better understanding of user intent. For example by default it will kill PWM
// when in this mode, unless PWM_CTRL2_WAITEN_MASK is set, and even with this set
// it may not work properly if the same timer/subtimer is trying to PWM on multiple channels.
// Maybe at later date, revisit after we have a better understanding on things like which
// timers it impacts and how each subsystem is configured.
// Clear the FPU interrupt because it can prevent us from sleeping.
if (__get_FPSCR() & ~(0x9f)) {
__set_FPSCR(__get_FPSCR() & ~(0x9f));
(void)__get_FPSCR();
}
common_hal_mcu_disable_interrupts();
if (!background_callback_pending()) {
#if IMXRT11XX
NVIC_ClearPendingIRQ(SNVS_HP_NON_TZ_IRQn);
#else
NVIC_ClearPendingIRQ(SNVS_HP_WRAPPER_IRQn);
#endif
__WFI();
}
common_hal_mcu_enable_interrupts();
}
// Catch faults where the memory access violates MPU settings.
void MemManage_Handler(void);
__attribute__((used)) void PLACE_IN_ITCM(MemManage_Handler)(void) {
reset_into_safe_mode(SAFE_MODE_HARD_FAULT);
while (true) {
asm ("nop;");
}
}
void BusFault_Handler(void);
__attribute__((used)) void PLACE_IN_ITCM(BusFault_Handler)(void) {
reset_into_safe_mode(SAFE_MODE_HARD_FAULT);
while (true) {
asm ("nop;");
}
}
void UsageFault_Handler(void);
__attribute__((used)) void PLACE_IN_ITCM(UsageFault_Handler)(void) {
reset_into_safe_mode(SAFE_MODE_HARD_FAULT);
while (true) {
asm ("nop;");
}
}
// Default fault handler.
void HardFault_Handler(void);
__attribute__((used)) void PLACE_IN_ITCM(HardFault_Handler)(void) {
reset_into_safe_mode(SAFE_MODE_HARD_FAULT);
while (true) {
asm ("nop;");
}
}
// Catch access errors to FlexRAM (if the MPU didn't catch it first.)
void FLEXRAM_IRQHandler(void);
__attribute__((used)) void PLACE_IN_ITCM(FLEXRAM_IRQHandler)(void) {
reset_into_safe_mode(SAFE_MODE_HARD_FAULT);
while (true) {
asm ("nop;");
}
}