circuitpython/extmod/moductypes.c

658 lines
25 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <assert.h>
#include <string.h>
#include <stdint.h>
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/objtuple.h"
#include "py/binary.h"
#if MICROPY_PY_UCTYPES
/// \module uctypes - Access data structures in memory
///
/// The module allows to define layout of raw data structure (using terms
/// of C language), and then access memory buffers using this definition.
/// The module also provides convenience functions to access memory buffers
/// contained in Python objects or wrap memory buffers in Python objects.
/// \constant UINT8_1 - uint8_t value type
/// \class struct - C-like structure
///
/// Encapsulalation of in-memory data structure. This class doesn't define
/// any methods, only attribute access (for structure fields) and
/// indexing (for pointer and array fields).
///
/// Usage:
///
/// # Define layout of a structure with 2 fields
/// # 0 and 4 are byte offsets of fields from the beginning of struct
/// # they are logically ORed with field type
/// FOO_STRUCT = {"a": 0 | uctypes.UINT32, "b": 4 | uctypes.UINT8}
///
/// # Example memory buffer to access (contained in bytes object)
/// buf = b"\x64\0\0\0\0x14"
///
/// # Create structure object referring to address of
/// # the data in the buffer above
/// s = uctypes.struct(FOO_STRUCT, uctypes.addressof(buf))
///
/// # Access fields
/// print(s.a, s.b)
/// # Result:
/// # 100, 20
#define LAYOUT_LITTLE_ENDIAN (0)
#define LAYOUT_BIG_ENDIAN (1)
#define LAYOUT_NATIVE (2)
#define VAL_TYPE_BITS 4
#define BITF_LEN_BITS 5
#define BITF_OFF_BITS 5
#define OFFSET_BITS 17
#if VAL_TYPE_BITS + BITF_LEN_BITS + BITF_OFF_BITS + OFFSET_BITS != 31
#error Invalid encoding field length
#endif
enum {
UINT8, INT8, UINT16, INT16,
UINT32, INT32, UINT64, INT64,
BFUINT8, BFINT8, BFUINT16, BFINT16,
BFUINT32, BFINT32,
FLOAT32, FLOAT64,
};
#define AGG_TYPE_BITS 2
enum {
STRUCT, PTR, ARRAY, BITFIELD,
};
// Here we need to set sign bit right
#define TYPE2SMALLINT(x, nbits) ((((int)x) << (32 - nbits)) >> 1)
#define GET_TYPE(x, nbits) (((x) >> (31 - nbits)) & ((1 << nbits) - 1))
// Bit 0 is "is_signed"
#define GET_SCALAR_SIZE(val_type) (1 << ((val_type) >> 1))
#define VALUE_MASK(type_nbits) ~((int)0x80000000 >> type_nbits)
#define IS_SCALAR_ARRAY(tuple_desc) ((tuple_desc)->len == 2)
// We cannot apply the below to INT8, as their range [-128, 127]
#define IS_SCALAR_ARRAY_OF_BYTES(tuple_desc) (GET_TYPE(MP_OBJ_SMALL_INT_VALUE((tuple_desc)->items[1]), VAL_TYPE_BITS) == UINT8)
// "struct" in uctypes context means "structural", i.e. aggregate, type.
STATIC const mp_obj_type_t uctypes_struct_type;
typedef struct _mp_obj_uctypes_struct_t {
mp_obj_base_t base;
mp_obj_t desc;
byte *addr;
uint32_t flags;
} mp_obj_uctypes_struct_t;
STATIC NORETURN void syntax_error() {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "syntax error in uctypes descriptor"));
}
STATIC mp_obj_t uctypes_struct_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
if (n_args < 2 || n_args > 3) {
syntax_error();
}
mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
o->base.type = type_in;
o->desc = args[0];
o->addr = (void*)mp_obj_get_int(args[1]);
o->flags = LAYOUT_NATIVE;
if (n_args == 3) {
o->flags = mp_obj_get_int(args[2]);
}
return o;
}
STATIC void uctypes_struct_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
mp_obj_uctypes_struct_t *self = self_in;
const char *typen = "unk";
if (MP_OBJ_IS_TYPE(self->desc, &mp_type_dict)) {
typen = "STRUCT";
} else if (MP_OBJ_IS_TYPE(self->desc, &mp_type_tuple)) {
mp_obj_tuple_t *t = (mp_obj_tuple_t*)self->desc;
mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
uint agg_type = GET_TYPE(offset, AGG_TYPE_BITS);
switch (agg_type) {
case PTR: typen = "PTR"; break;
case ARRAY: typen = "ARRAY"; break;
}
} else {
typen = "ERROR";
}
print(env, "<struct %s %p>", typen, self->addr);
}
// Get size of any type descriptor
STATIC mp_uint_t uctypes_struct_size(mp_obj_t desc_in, mp_uint_t *max_field_size);
// Get size of scalar type descriptor
static inline mp_uint_t uctypes_struct_scalar_size(int val_type) {
if (val_type == FLOAT32) {
return 4;
} else {
return GET_SCALAR_SIZE(val_type & 7);
}
}
// Get size of aggregate type descriptor
STATIC mp_uint_t uctypes_struct_agg_size(mp_obj_tuple_t *t, mp_uint_t *max_field_size) {
mp_uint_t total_size = 0;
mp_int_t offset_ = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
mp_uint_t agg_type = GET_TYPE(offset_, AGG_TYPE_BITS);
switch (agg_type) {
case STRUCT:
return uctypes_struct_size(t->items[1], max_field_size);
case PTR:
if (sizeof(void*) > *max_field_size) {
*max_field_size = sizeof(void*);
}
return sizeof(void*);
case ARRAY: {
mp_int_t arr_sz = MP_OBJ_SMALL_INT_VALUE(t->items[1]);
uint val_type = GET_TYPE(arr_sz, VAL_TYPE_BITS);
arr_sz &= VALUE_MASK(VAL_TYPE_BITS);
mp_uint_t item_s;
if (t->len == 2) {
// Elements of array are scalar
item_s = GET_SCALAR_SIZE(val_type);
if (item_s > *max_field_size) {
*max_field_size = item_s;
}
} else {
// Elements of array are aggregates
item_s = uctypes_struct_size(t->items[2], max_field_size);
}
return item_s * arr_sz;
}
default:
assert(0);
}
return total_size;
}
STATIC mp_uint_t uctypes_struct_size(mp_obj_t desc_in, mp_uint_t *max_field_size) {
mp_obj_dict_t *d = desc_in;
mp_uint_t total_size = 0;
if (!MP_OBJ_IS_TYPE(desc_in, &mp_type_dict)) {
if (MP_OBJ_IS_TYPE(desc_in, &mp_type_tuple)) {
return uctypes_struct_agg_size((mp_obj_tuple_t*)desc_in, max_field_size);
} else if (MP_OBJ_IS_SMALL_INT(desc_in)) {
// We allow sizeof on both type definitions and structures/structure fields,
// but scalar structure field is lowered into native Python int, so all
// type info is lost. So, we cannot say if it's scalar type description,
// or such lowered scalar.
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "Cannot unambiguously get sizeof scalar"));
}
syntax_error();
}
for (mp_uint_t i = 0; i < d->map.alloc; i++) {
if (MP_MAP_SLOT_IS_FILLED(&d->map, i)) {
mp_obj_t v = d->map.table[i].value;
if (MP_OBJ_IS_SMALL_INT(v)) {
mp_uint_t offset = MP_OBJ_SMALL_INT_VALUE(v);
mp_uint_t val_type = GET_TYPE(offset, VAL_TYPE_BITS);
offset &= VALUE_MASK(VAL_TYPE_BITS);
mp_uint_t s = uctypes_struct_scalar_size(val_type);
if (s > *max_field_size) {
*max_field_size = s;
}
if (offset + s > total_size) {
total_size = offset + s;
}
} else {
if (!MP_OBJ_IS_TYPE(v, &mp_type_tuple)) {
syntax_error();
}
mp_obj_tuple_t *t = (mp_obj_tuple_t*)v;
mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
offset &= VALUE_MASK(AGG_TYPE_BITS);
mp_uint_t s = uctypes_struct_agg_size(t, max_field_size);
if (offset + s > total_size) {
total_size = offset + s;
}
}
}
}
// Round size up to alignment of biggest field
total_size = (total_size + *max_field_size - 1) & ~(*max_field_size - 1);
return total_size;
}
STATIC mp_obj_t uctypes_struct_sizeof(mp_obj_t obj_in) {
mp_uint_t max_field_size = 0;
if (MP_OBJ_IS_TYPE(obj_in, &mp_type_bytearray)) {
return mp_obj_len(obj_in);
}
// We can apply sizeof either to structure definition (a dict)
// or to instantiated structure
if (MP_OBJ_IS_TYPE(obj_in, &uctypes_struct_type)) {
// Extract structure definition
mp_obj_uctypes_struct_t *obj = obj_in;
obj_in = obj->desc;
}
mp_uint_t size = uctypes_struct_size(obj_in, &max_field_size);
return MP_OBJ_NEW_SMALL_INT(size);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(uctypes_struct_sizeof_obj, uctypes_struct_sizeof);
STATIC inline mp_obj_t get_unaligned(uint val_type, void *p, int big_endian) {
mp_int_t val = mp_binary_get_int(GET_SCALAR_SIZE(val_type), val_type & 1, big_endian, p);
if (val_type == UINT32) {
return mp_obj_new_int_from_uint(val);
} else {
return mp_obj_new_int(val);
}
}
STATIC inline void set_unaligned(uint val_type, byte *p, int big_endian, mp_obj_t val) {
char struct_type = big_endian ? '>' : '<';
static const char type2char[8] = "BbHhIiQq";
mp_binary_set_val(struct_type, type2char[val_type], val, &p);
}
static inline mp_uint_t get_aligned_basic(uint val_type, void *p) {
switch (val_type) {
case UINT8:
return *(uint8_t*)p;
case UINT16:
return *(uint16_t*)p;
case UINT32:
return *(uint32_t*)p;
}
assert(0);
return 0;
}
static inline void set_aligned_basic(uint val_type, void *p, mp_uint_t v) {
switch (val_type) {
case UINT8:
*(uint8_t*)p = (uint8_t)v; return;
case UINT16:
*(uint16_t*)p = (uint16_t)v; return;
case UINT32:
*(uint32_t*)p = (uint32_t)v; return;
}
assert(0);
}
STATIC mp_obj_t get_aligned(uint val_type, void *p, mp_int_t index) {
switch (val_type) {
case UINT8:
return MP_OBJ_NEW_SMALL_INT(((uint8_t*)p)[index]);
case INT8:
return MP_OBJ_NEW_SMALL_INT(((int8_t*)p)[index]);
case UINT16:
return MP_OBJ_NEW_SMALL_INT(((uint16_t*)p)[index]);
case INT16:
return MP_OBJ_NEW_SMALL_INT(((int16_t*)p)[index]);
case UINT32:
return mp_obj_new_int_from_uint(((uint32_t*)p)[index]);
case INT32:
return mp_obj_new_int(((int32_t*)p)[index]);
case UINT64:
case INT64:
return mp_obj_new_int_from_ll(((int64_t*)p)[index]);
#if MICROPY_PY_BUILTINS_FLOAT
case FLOAT32:
return mp_obj_new_float(((float*)p)[index]);
case FLOAT64:
return mp_obj_new_float(((double*)p)[index]);
#endif
default:
assert(0);
return MP_OBJ_NULL;
}
}
STATIC void set_aligned(uint val_type, void *p, mp_int_t index, mp_obj_t val) {
mp_int_t v = mp_obj_get_int(val);
switch (val_type) {
case UINT8:
((uint8_t*)p)[index] = (uint8_t)v; return;
case INT8:
((int8_t*)p)[index] = (int8_t)v; return;
case UINT16:
((uint16_t*)p)[index] = (uint16_t)v; return;
case INT16:
((int16_t*)p)[index] = (int16_t)v; return;
case UINT32:
((uint32_t*)p)[index] = (uint32_t)v; return;
case INT32:
((int32_t*)p)[index] = (int32_t)v; return;
default:
assert(0);
}
}
STATIC mp_obj_t uctypes_struct_attr_op(mp_obj_t self_in, qstr attr, mp_obj_t set_val) {
mp_obj_uctypes_struct_t *self = self_in;
// TODO: Support at least OrderedDict in addition
if (!MP_OBJ_IS_TYPE(self->desc, &mp_type_dict)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "struct: no fields"));
}
mp_obj_t deref = mp_obj_dict_get(self->desc, MP_OBJ_NEW_QSTR(attr));
if (MP_OBJ_IS_SMALL_INT(deref)) {
mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(deref);
mp_uint_t val_type = GET_TYPE(offset, VAL_TYPE_BITS);
offset &= VALUE_MASK(VAL_TYPE_BITS);
//printf("scalar type=%d offset=%x\n", val_type, offset);
if (val_type <= INT64) {
// printf("size=%d\n", GET_SCALAR_SIZE(val_type));
if (self->flags == LAYOUT_NATIVE) {
if (set_val == MP_OBJ_NULL) {
return get_aligned(val_type, self->addr + offset, 0);
} else {
set_aligned(val_type, self->addr + offset, 0, set_val);
return set_val; // just !MP_OBJ_NULL
}
} else {
if (set_val == MP_OBJ_NULL) {
return get_unaligned(val_type, self->addr + offset, self->flags);
} else {
set_unaligned(val_type, self->addr + offset, self->flags, set_val);
return set_val; // just !MP_OBJ_NULL
}
}
} else if (val_type >= BFUINT8 && val_type <= BFINT32) {
uint bit_offset = (offset >> 17) & 31;
uint bit_len = (offset >> 22) & 31;
offset &= (1 << 17) - 1;
mp_uint_t val;
if (self->flags == LAYOUT_NATIVE) {
val = get_aligned_basic(val_type & 6, self->addr + offset);
} else {
val = mp_binary_get_int(GET_SCALAR_SIZE(val_type & 7), val_type & 1, self->flags, self->addr + offset);
}
if (set_val == MP_OBJ_NULL) {
val >>= bit_offset;
val &= (1 << bit_len) - 1;
// TODO: signed
assert((val_type & 1) == 0);
return mp_obj_new_int(val);
} else {
mp_uint_t set_val_int = (mp_uint_t)mp_obj_get_int(set_val);
mp_uint_t mask = (1 << bit_len) - 1;
set_val_int &= mask;
set_val_int <<= bit_offset;
mask <<= bit_offset;
val = (val & ~mask) | set_val_int;
if (self->flags == LAYOUT_NATIVE) {
set_aligned_basic(val_type & 6, self->addr + offset, val);
} else {
mp_binary_set_int(GET_SCALAR_SIZE(val_type & 7), self->flags == LAYOUT_BIG_ENDIAN,
self->addr + offset, val);
}
return set_val; // just !MP_OBJ_NULL
}
}
assert(0);
return MP_OBJ_NULL;
}
if (!MP_OBJ_IS_TYPE(deref, &mp_type_tuple)) {
syntax_error();
}
if (set_val != MP_OBJ_NULL) {
// Cannot assign to aggregate
syntax_error();
}
mp_obj_tuple_t *sub = (mp_obj_tuple_t*)deref;
mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(sub->items[0]);
mp_uint_t agg_type = GET_TYPE(offset, AGG_TYPE_BITS);
offset &= VALUE_MASK(AGG_TYPE_BITS);
//printf("agg type=%d offset=%x\n", agg_type, offset);
switch (agg_type) {
case STRUCT: {
mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
o->base.type = &uctypes_struct_type;
o->desc = sub->items[1];
o->addr = self->addr + offset;
o->flags = self->flags;
return o;
}
case ARRAY: {
mp_uint_t dummy;
if (IS_SCALAR_ARRAY(sub) && IS_SCALAR_ARRAY_OF_BYTES(sub)) {
return mp_obj_new_bytearray_by_ref(uctypes_struct_agg_size(sub, &dummy), self->addr + offset);
}
// Fall thru to return uctypes struct object
}
case PTR: {
mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
o->base.type = &uctypes_struct_type;
o->desc = sub;
o->addr = self->addr + offset;
o->flags = self->flags;
//printf("PTR/ARR base addr=%p\n", o->addr);
return o;
}
}
// Should be unreachable once all cases are handled
return MP_OBJ_NULL;
}
STATIC void uctypes_struct_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
mp_obj_t val = uctypes_struct_attr_op(self_in, attr, MP_OBJ_NULL);
*dest = val;
}
STATIC bool uctypes_struct_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t val) {
return uctypes_struct_attr_op(self_in, attr, val) != MP_OBJ_NULL;
}
STATIC mp_obj_t uctypes_struct_subscr(mp_obj_t self_in, mp_obj_t index_in, mp_obj_t value) {
mp_obj_uctypes_struct_t *self = self_in;
if (value == MP_OBJ_NULL) {
// delete
return MP_OBJ_NULL; // op not supported
} else if (value == MP_OBJ_SENTINEL) {
// load
if (!MP_OBJ_IS_TYPE(self->desc, &mp_type_tuple)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "struct: cannot index"));
}
mp_obj_tuple_t *t = (mp_obj_tuple_t*)self->desc;
mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
uint agg_type = GET_TYPE(offset, AGG_TYPE_BITS);
mp_int_t index = MP_OBJ_SMALL_INT_VALUE(index_in);
if (agg_type == ARRAY) {
mp_int_t arr_sz = MP_OBJ_SMALL_INT_VALUE(t->items[1]);
uint val_type = GET_TYPE(arr_sz, VAL_TYPE_BITS);
arr_sz &= VALUE_MASK(VAL_TYPE_BITS);
if (index >= arr_sz) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_IndexError, "struct: index out of range"));
}
if (t->len == 2) {
byte *p = self->addr + GET_SCALAR_SIZE(val_type) * index;
return get_unaligned(val_type, p, self->flags);
} else {
mp_uint_t dummy = 0;
mp_uint_t size = uctypes_struct_size(t->items[2], &dummy);
mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
o->base.type = &uctypes_struct_type;
o->desc = t->items[2];
o->addr = self->addr + size * index;
o->flags = self->flags;
return o;
}
} else if (agg_type == PTR) {
byte *p = *(void**)self->addr;
if (MP_OBJ_IS_SMALL_INT(t->items[1])) {
uint val_type = GET_TYPE(MP_OBJ_SMALL_INT_VALUE(t->items[1]), VAL_TYPE_BITS);
return get_aligned(val_type, p, index);
} else {
mp_uint_t dummy = 0;
mp_uint_t size = uctypes_struct_size(t->items[1], &dummy);
mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
o->base.type = &uctypes_struct_type;
o->desc = t->items[1];
o->addr = p + size * index;
o->flags = self->flags;
return o;
}
}
assert(0);
return MP_OBJ_NULL;
} else {
// store
return MP_OBJ_NULL; // op not supported
}
}
/// \function addressof()
/// Return address of object's data (applies to object providing buffer
/// interface).
STATIC mp_obj_t uctypes_struct_addressof(mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
return mp_obj_new_int((mp_int_t)bufinfo.buf);
}
MP_DEFINE_CONST_FUN_OBJ_1(uctypes_struct_addressof_obj, uctypes_struct_addressof);
/// \function bytearray_at()
/// Capture memory at given address of given size as bytearray. Memory is
/// captured by reference (and thus memory pointed by bytearray may change
/// or become invalid at later time). Use bytes_at() to capture by value.
STATIC mp_obj_t uctypes_struct_bytearray_at(mp_obj_t ptr, mp_obj_t size) {
return mp_obj_new_bytearray_by_ref(mp_obj_int_get_truncated(size), (void*)mp_obj_int_get_truncated(ptr));
}
MP_DEFINE_CONST_FUN_OBJ_2(uctypes_struct_bytearray_at_obj, uctypes_struct_bytearray_at);
/// \function bytes_at()
/// Capture memory at given address of given size as bytes. Memory is
/// captured by value, i.e. copied. Use bytearray_at() to capture by reference
/// ("zero copy").
STATIC mp_obj_t uctypes_struct_bytes_at(mp_obj_t ptr, mp_obj_t size) {
return mp_obj_new_bytes((void*)mp_obj_int_get_truncated(ptr), mp_obj_int_get_truncated(size));
}
MP_DEFINE_CONST_FUN_OBJ_2(uctypes_struct_bytes_at_obj, uctypes_struct_bytes_at);
STATIC const mp_obj_type_t uctypes_struct_type = {
{ &mp_type_type },
.name = MP_QSTR_struct,
.print = uctypes_struct_print,
.make_new = uctypes_struct_make_new,
.load_attr = uctypes_struct_load_attr,
.store_attr = uctypes_struct_store_attr,
.subscr = uctypes_struct_subscr,
};
STATIC const mp_map_elem_t mp_module_uctypes_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_uctypes) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_struct), (mp_obj_t)&uctypes_struct_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sizeof), (mp_obj_t)&uctypes_struct_sizeof_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_addressof), (mp_obj_t)&uctypes_struct_addressof_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_bytes_at), (mp_obj_t)&uctypes_struct_bytes_at_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_bytearray_at), (mp_obj_t)&uctypes_struct_bytearray_at_obj },
/// \moduleref uctypes
/// \constant NATIVE - Native structure layout - native endianness,
/// platform-specific field alignment
{ MP_OBJ_NEW_QSTR(MP_QSTR_NATIVE), MP_OBJ_NEW_SMALL_INT(LAYOUT_NATIVE) },
/// \constant LITTLE_ENDIAN - Little-endian structure layout, tightly packed
/// (no alignment constraints)
{ MP_OBJ_NEW_QSTR(MP_QSTR_LITTLE_ENDIAN), MP_OBJ_NEW_SMALL_INT(LAYOUT_LITTLE_ENDIAN) },
/// \constant BIG_ENDIAN - Big-endian structure layout, tightly packed
/// (no alignment constraints)
{ MP_OBJ_NEW_QSTR(MP_QSTR_BIG_ENDIAN), MP_OBJ_NEW_SMALL_INT(LAYOUT_BIG_ENDIAN) },
/// \constant VOID - void value type, may be used only as pointer target type.
{ MP_OBJ_NEW_QSTR(MP_QSTR_VOID), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(UINT8, VAL_TYPE_BITS)) },
/// \constant UINT8 - uint8_t value type
{ MP_OBJ_NEW_QSTR(MP_QSTR_UINT8), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(UINT8, 4)) },
/// \constant INT8 - int8_t value type
{ MP_OBJ_NEW_QSTR(MP_QSTR_INT8), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(INT8, 4)) },
/// \constant UINT16 - uint16_t value type
{ MP_OBJ_NEW_QSTR(MP_QSTR_UINT16), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(UINT16, 4)) },
/// \constant INT16 - int16_t value type
{ MP_OBJ_NEW_QSTR(MP_QSTR_INT16), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(INT16, 4)) },
/// \constant UINT32 - uint32_t value type
{ MP_OBJ_NEW_QSTR(MP_QSTR_UINT32), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(UINT32, 4)) },
/// \constant INT32 - int32_t value type
{ MP_OBJ_NEW_QSTR(MP_QSTR_INT32), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(INT32, 4)) },
/// \constant UINT64 - uint64_t value type
{ MP_OBJ_NEW_QSTR(MP_QSTR_UINT64), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(UINT64, 4)) },
/// \constant INT64 - int64_t value type
{ MP_OBJ_NEW_QSTR(MP_QSTR_INT64), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(INT64, 4)) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_BFUINT8), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(BFUINT8, 4)) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_BFINT8), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(BFINT8, 4)) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_BFUINT16), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(BFUINT16, 4)) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_BFINT16), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(BFINT16, 4)) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_BFUINT32), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(BFUINT32, 4)) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_BFINT32), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(BFINT32, 4)) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_BF_POS), MP_OBJ_NEW_SMALL_INT(17) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_BF_LEN), MP_OBJ_NEW_SMALL_INT(22) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PTR), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(PTR, AGG_TYPE_BITS)) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ARRAY), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(ARRAY, AGG_TYPE_BITS)) },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_uctypes_globals, mp_module_uctypes_globals_table);
const mp_obj_module_t mp_module_uctypes = {
.base = { &mp_type_module },
.name = MP_QSTR_uctypes,
.globals = (mp_obj_dict_t*)&mp_module_uctypes_globals,
};
#endif