Jeff Epler a8614a61dc ParallelImageCapture: Add continuous capture on espressif
By having a pair of buffers, the capture hardware can fill one buffer while
Python code (including displayio, etc) operates on the other buffer.  This
increases the responsiveness of camera-using code.

On the Kaluga it makes the following improvements:
 * 320x240 viewfinder at 30fps instead of 15fps using directio
 * 240x240 animated gif capture at 10fps instead of 7.5fps

As discussed at length on Discord, the "usual end user" code will look like
this:

    camera = ...

    with camera.continuous_capture(buffer1, buffer2) as capture:
        for frame in capture:
            # Do something with frame

However, rather than presenting a context manager, the core code consists of
three new functions to start & stop continuous capture, and to get the next
frame.  The reason is twofold.  First, it's simply easier to implement the
context manager object in pure Python.  Second, for more advanced usage, the
context manager may be too limiting, and it's easier to iterate on the right
design in Python code.  In particular, I noticed that adapting the
JPEG-capturing programs to use continuous capture mode needed a change in
program structure.

The camera app was structured as
```python
while True:
    if shutter button was just pressed:
        capture a jpeg frame
    else:
        update the viewfinder
```

However, "capture a jpeg frame" needs to (A) switch the camera settings and (B)
capture into a different, larger buffer then (C) return to the earlier
settings. This can't be done during continuous capture mode. So just
restructuring it as follows isn't going to work:

```python
with camera.continuous_capture(buffer1, buffer2) as capture:
    for frame in capture:
        if shutter button was just pressed:
            capture a jpeg frame, without disturbing continuous capture mode
        else:
            update the viewfinder
```

The continuous mode is only implemented in the espressif port; others
will throw an exception if the associated methods are invoked.  It's not
impossible to implement there, just not a priority, since these micros don't
have enough RAM for two framebuffer copies at any resonable sizes.

The capture code, including single-shot capture, now take mp_obj_t in the
common-hal layer, instead of a buffer & length.  This was done for the
continuous capture mode because it has to identify & return to the user the
proper Python object representing the original buffer.  In the Espressif port,
it was convenient to implement single capture in terms of a multi-capture,
which is why I changed the singleshot routine's signature too.
2021-11-03 11:02:46 -05:00

196 lines
7.4 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Jeff Epler for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/obj.h"
#include "py/runtime.h"
#include "shared/runtime/context_manager_helpers.h"
#include "shared/runtime/interrupt_char.h"
#include "shared-bindings/imagecapture/ParallelImageCapture.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "common-hal/imagecapture/ParallelImageCapture.h"
#include "hal/include/hal_gpio.h"
#include "atmel_start_pins.h"
#include "audio_dma.h"
#include "samd/clocks.h"
#include "samd/events.h"
#define GPIO_PIN_FUNCTION_PCC (GPIO_PIN_FUNCTION_K)
#define PIN_PCC_D0 (PIN_PA16)
#define PIN_PCC_DEN1 (PIN_PA12)
#define PIN_PCC_DEN2 (PIN_PA13)
#define PIN_PCC_CLK (PIN_PA14)
void common_hal_imagecapture_parallelimagecapture_construct(imagecapture_parallelimagecapture_obj_t *self,
const uint8_t data_pins[],
uint8_t data_count,
const mcu_pin_obj_t *data_clock,
const mcu_pin_obj_t *vertical_sync,
const mcu_pin_obj_t *horizontal_reference) {
for (int i = 0; i < data_count; i++) {
if (data_pins[i] != PIN_PCC_D0 + i) {
mp_raise_ValueError_varg(translate("Invalid data_pins[%d]"), i);
}
}
// The peripheral supports 8, 10, 12, or 14 data bits, but the code only supports 8 at present
if (data_count != 8) {
mp_raise_ValueError_varg(translate("Invalid data_count %d"), data_count);
}
if (vertical_sync && vertical_sync->number != PIN_PCC_DEN1) {
mp_raise_ValueError_varg(translate("Invalid %q pin"), MP_QSTR_vsync);
}
if (horizontal_reference && horizontal_reference->number != PIN_PCC_DEN2) {
mp_raise_ValueError_varg(translate("Invalid %q pin"), MP_QSTR_href);
}
if (data_clock->number != PIN_PCC_CLK) {
mp_raise_ValueError_varg(translate("Invalid %q pin"), MP_QSTR_data_clock);
}
// technically, 0 was validated as free already but check again
for (int i = 0; i < data_count; i++) {
if (!pin_number_is_free(data_pins[i])) {
mp_raise_ValueError_varg(translate("data pin #%d in use"), i);
}
}
PCC->MR.bit.PCEN = 0; // Make sure PCC is disabled before setting MR reg
PCC->IDR.reg = 0b1111; // Disable all PCC interrupts
MCLK->APBDMASK.bit.PCC_ = 1; // Enable PCC clock
// Accumulate 4 bytes into RHR register (two 16-bit pixels)
PCC->MR.reg = PCC_MR_CID(0x1) | // Clear on falling DEN1 (VSYNC)
PCC_MR_ISIZE(0x0) | // Input data bus is 8 bits
PCC_MR_DSIZE(0x2); // "4 data" at a time (accumulate in RHR)
PCC->MR.bit.PCEN = 1; // Enable PCC
// Now we know we can allocate all pins
self->data_count = data_count;
self->vertical_sync = vertical_sync ? vertical_sync->number : NO_PIN;
self->horizontal_reference = horizontal_reference ? horizontal_reference->number : NO_PIN;
gpio_set_pin_direction(PIN_PCC_CLK, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(PIN_PCC_CLK, GPIO_PULL_OFF);
gpio_set_pin_function(PIN_PCC_CLK, GPIO_PIN_FUNCTION_PCC);
// claim_pin_number(PIN_PCC_CLK);
if (vertical_sync) {
gpio_set_pin_direction(PIN_PCC_DEN1, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(PIN_PCC_DEN1, GPIO_PULL_OFF);
gpio_set_pin_function(PIN_PCC_DEN1, GPIO_PIN_FUNCTION_PCC); // VSYNC
// claim_pin_number(PIN_PCC_DEN1);
}
if (horizontal_reference) {
gpio_set_pin_direction(PIN_PCC_DEN2, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(PIN_PCC_DEN2, GPIO_PULL_OFF);
gpio_set_pin_function(PIN_PCC_DEN2, GPIO_PIN_FUNCTION_PCC); // HSYNC
// claim_pin_number(PIN_PCC_DEN2);
}
for (int i = 0; i < data_count; i++) {
gpio_set_pin_direction(PIN_PCC_D0 + i, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(PIN_PCC_D0 + i, GPIO_PULL_OFF);
gpio_set_pin_function(PIN_PCC_D0 + i, GPIO_PIN_FUNCTION_PCC);
// claim_pin_number(PIN_PCC_D0+i);
}
}
void common_hal_imagecapture_parallelimagecapture_deinit(imagecapture_parallelimagecapture_obj_t *self) {
if (common_hal_imagecapture_parallelimagecapture_deinited(self)) {
return;
}
reset_pin_number(self->vertical_sync);
reset_pin_number(self->horizontal_reference);
reset_pin_number(PIN_PCC_CLK);
for (int i = 0; i < self->data_count; i++) {
reset_pin_number(PIN_PCC_D0 + i);
}
self->data_count = 0;
}
bool common_hal_imagecapture_parallelimagecapture_deinited(imagecapture_parallelimagecapture_obj_t *self) {
return self->data_count == 0;
}
static void setup_dma(DmacDescriptor *descriptor, size_t count, uint32_t *buffer) {
descriptor->BTCTRL.reg = DMAC_BTCTRL_VALID |
DMAC_BTCTRL_BLOCKACT_NOACT |
DMAC_BTCTRL_EVOSEL_BLOCK |
DMAC_BTCTRL_DSTINC |
DMAC_BTCTRL_BEATSIZE_WORD;
descriptor->BTCNT.reg = count;
descriptor->DSTADDR.reg = (uint32_t)buffer + 4 * count;
descriptor->SRCADDR.reg = (uint32_t)&PCC->RHR.reg;
descriptor->DESCADDR.reg = 0;
}
void common_hal_imagecapture_parallelimagecapture_singleshot_capture(imagecapture_parallelimagecapture_obj_t *self, mp_obj_t buffer) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buffer, &bufinfo, MP_BUFFER_RW);
uint8_t dma_channel = dma_allocate_channel();
uint32_t *dest = bufinfo.buf;
size_t count = bufinfo.len / 4; // PCC receives 4 bytes (2 pixels) at a time
turn_on_event_system();
setup_dma(dma_descriptor(dma_channel), count, dest);
dma_configure(dma_channel, PCC_DMAC_ID_RX, true);
if (self->vertical_sync) {
const volatile uint32_t *vsync_reg = &PORT->Group[(self->vertical_sync / 32)].IN.reg;
uint32_t vsync_bit = 1 << (self->vertical_sync % 32);
while (*vsync_reg & vsync_bit) {
// Wait for VSYNC low (frame end)
RUN_BACKGROUND_TASKS;
// Allow user to break out of a timeout with a KeyboardInterrupt.
if (mp_hal_is_interrupted()) {
dma_free_channel(dma_channel);
return;
}
}
}
dma_enable_channel(dma_channel);
while (DMAC->Channel[dma_channel].CHCTRLA.bit.ENABLE) {
RUN_BACKGROUND_TASKS;
if (mp_hal_is_interrupted()) {
break;
}
}
dma_disable_channel(dma_channel);
dma_free_channel(dma_channel);
}