Andrew Leech f03ac04321 stm32/mboot: Fix alignment of packed final buffer.
Once all the firmware has been flashed and the final signatures checked,
mboot writes the "all good" byte into the header of the application.  This
step uses the buffer firmware_head which, if unaligned in the build, fails
when cast to a uint64_t* in flash.c.

Signed-off-by: Andrew Leech <andrew.leech@planetinnovation.com.au>
2023-05-19 22:16:53 +10:00

296 lines
11 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "dfu.h"
#include "gzstream.h"
#include "mboot.h"
#include "pack.h"
#if MBOOT_ENABLE_PACKING
// Keys provided externally by the board, will be built into mboot flash.
#include MBOOT_PACK_KEYS_FILE
// Encrypted dfu files using gzip require a decompress buffer. Larger can be faster.
// This setting is independent to the incoming encrypted/signed/compressed DFU file.
#ifndef MBOOT_PACK_GZIP_BUFFER_SIZE
#define MBOOT_PACK_GZIP_BUFFER_SIZE (2048)
#endif
// State to manage automatic flash erasure.
static uint32_t erased_base_addr;
static uint32_t erased_top_addr;
// DFU chunk buffer, used to cache incoming blocks of data from USB.
static uint32_t firmware_chunk_base_addr;
static mboot_pack_chunk_buf_t firmware_chunk_buf;
// Temporary buffer for decrypted data.
static uint8_t decrypted_buf[MBOOT_PACK_DFU_CHUNK_BUF_SIZE] __attribute__((aligned(8)));
// Temporary buffer for uncompressing.
static uint8_t uncompressed_buf[MBOOT_PACK_GZIP_BUFFER_SIZE] __attribute__((aligned(8)));
// Buffer to hold the start of the firmware, which is only written once the
// entire firmware is validated. This is 8 bytes due to STM32WB MCUs requiring
// that a double-word write to flash can only be done once (due to ECC).
static uint8_t firmware_head[8] __attribute__((aligned(8)));
// Flag to indicate that firmware_head contains valid data.
static bool firmware_head_valid;
void mboot_pack_init(void) {
erased_base_addr = 0;
erased_top_addr = 0;
firmware_chunk_base_addr = 0;
firmware_head_valid = false;
}
// In encrypted mode the erase is automatically managed.
// Note: this scheme requires blocks be written in sequence, which is the case.
static int mboot_pack_erase(uint32_t addr, size_t len) {
while (!(erased_base_addr <= addr && addr + len <= erased_top_addr)) {
uint32_t erase;
if (erased_base_addr <= addr && addr < erased_top_addr) {
erase = erased_top_addr;
} else {
erase = addr;
erased_base_addr = addr;
}
uint32_t next_addr;
int ret = hw_page_erase(erase, &next_addr);
if (ret != 0) {
return ret;
}
erased_top_addr = next_addr;
}
return 0;
}
// Commit an unencrypted and uncompressed chunk of firmware to the flash.
static int mboot_pack_commit_chunk(uint32_t addr, uint8_t *data, size_t len) {
// Erase any required sectors before writing.
int ret = mboot_pack_erase(addr, len);
if (ret != 0) {
return ret;
}
if (addr == APPLICATION_ADDR) {
// Don't write the very start of the firmware, just copy it into a temporary buffer.
// It will be written only if the full firmware passes the checksum/signature.
memcpy(firmware_head, data, sizeof(firmware_head));
addr += sizeof(firmware_head);
data += sizeof(firmware_head);
len -= sizeof(firmware_head);
firmware_head_valid = true;
}
// Commit this piece of the firmware.
return hw_write(addr, data, len);
}
// Handle a chunk with the full firmware signature.
static int mboot_pack_handle_full_sig(void) {
if (firmware_chunk_buf.header.length < hydro_sign_BYTES) {
return -MBOOT_ERRNO_PACK_INVALID_CHUNK;
}
uint8_t *full_sig = &firmware_chunk_buf.data[firmware_chunk_buf.header.length - hydro_sign_BYTES];
uint32_t *region_data = (uint32_t *)&firmware_chunk_buf.data[0];
size_t num_regions = (full_sig - (uint8_t *)region_data) / sizeof(uint32_t) / 2;
uint8_t *buf = decrypted_buf;
const size_t buf_alloc = sizeof(decrypted_buf);
// Compute the signature of the full firmware.
hydro_sign_state sign_state;
hydro_sign_init(&sign_state, MBOOT_PACK_HYDRO_CONTEXT);
for (size_t region = 0; region < num_regions; ++region) {
uint32_t addr = region_data[2 * region];
uint32_t len = region_data[2 * region + 1];
while (len) {
uint32_t l = len <= buf_alloc ? len : buf_alloc;
hw_read(addr, l, buf);
if (addr == APPLICATION_ADDR && firmware_head_valid) {
// The start of the firmware was not yet written to flash so copy
// it out of the temporary buffer to compute the full signature.
memcpy(buf, firmware_head, sizeof(firmware_head));
}
int ret = hydro_sign_update(&sign_state, buf, l);
if (ret != 0) {
return -MBOOT_ERRNO_PACK_SIGN_FAILED;
}
addr += l;
len -= l;
}
}
// Verify the signature of the full firmware.
int ret = hydro_sign_final_verify(&sign_state, full_sig, mboot_pack_sign_public_key);
if (ret != 0) {
dfu_context.status = DFU_STATUS_ERROR_VERIFY;
dfu_context.error = MBOOT_ERROR_STR_INVALID_SIG_IDX;
return -MBOOT_ERRNO_PACK_SIGN_FAILED;
}
// Full firmware passed the signature check.
if (firmware_head_valid) {
// Write the start of the firmware so it boots.
ret = hw_write(APPLICATION_ADDR, firmware_head, sizeof(firmware_head));
}
return ret;
}
// Handle a chunk with firmware data.
static int mboot_pack_handle_firmware(void) {
const uint8_t *fw_data = &firmware_chunk_buf.data[0];
const size_t fw_len = firmware_chunk_buf.header.length;
// Decrypt the chunk.
if (hydro_secretbox_decrypt(decrypted_buf, fw_data, fw_len, 0, MBOOT_PACK_HYDRO_CONTEXT, mboot_pack_secretbox_key) != 0) {
dfu_context.status = DFU_STATUS_ERROR_VERIFY;
dfu_context.error = MBOOT_ERROR_STR_INVALID_SIG_IDX;
return -MBOOT_ERRNO_PACK_DECRYPT_FAILED;
}
// Use the decrypted message contents going formward.
size_t len = fw_len - hydro_secretbox_HEADERBYTES;
uint32_t addr = firmware_chunk_buf.header.address;
if (firmware_chunk_buf.header.format == MBOOT_PACK_CHUNK_FW_GZIP) {
// Decompress chunk data.
gz_stream_init_from_raw_data(decrypted_buf, len);
for (;;) {
int read = gz_stream_read(sizeof(uncompressed_buf), uncompressed_buf);
if (read == 0) {
return 0; // finished decompressing
} else if (read < 0) {
return -MBOOT_ERRNO_GUNZIP_FAILED; // error reading
}
int ret = mboot_pack_commit_chunk(addr, uncompressed_buf, read);
if (ret != 0) {
return ret;
}
addr += read;
}
} else {
// Commit chunk data directly.
return mboot_pack_commit_chunk(addr, decrypted_buf, len);
}
}
int mboot_pack_write(uint32_t addr, const uint8_t *src8, size_t len, bool dry_run) {
if (addr == APPLICATION_ADDR) {
// Base address of main firmware, reset any previous state
firmware_chunk_base_addr = 0;
}
if (firmware_chunk_base_addr == 0) {
// First piece of data starting a new chunk, so set the base address.
firmware_chunk_base_addr = addr;
}
if (addr < firmware_chunk_base_addr) {
// Address out of range.
firmware_chunk_base_addr = 0;
return -MBOOT_ERRNO_PACK_INVALID_ADDR;
}
size_t offset = addr - firmware_chunk_base_addr;
if (offset + len > sizeof(firmware_chunk_buf)) {
// Address/length out of range.
firmware_chunk_base_addr = 0;
return -MBOOT_ERRNO_PACK_INVALID_ADDR;
}
// Copy in the new data piece into the chunk buffer.
memcpy((uint8_t *)&firmware_chunk_buf + offset, src8, len);
if (offset + len < sizeof(firmware_chunk_buf.header)) {
// Don't have the header yet.
return 0;
}
if (firmware_chunk_buf.header.header_vers != MBOOT_PACK_HEADER_VERSION) {
// Chunk header has the wrong version.
dfu_context.status = DFU_STATUS_ERROR_FILE;
dfu_context.error = MBOOT_ERROR_STR_INVALID_SIG_IDX;
return -MBOOT_ERRNO_PACK_INVALID_VERSION;
}
if (firmware_chunk_buf.header.address != firmware_chunk_base_addr) {
// Chunk address doesn't agree with dfu address, abort.
dfu_context.status = DFU_STATUS_ERROR_ADDRESS;
dfu_context.error = MBOOT_ERROR_STR_INVALID_SIG_IDX;
return -MBOOT_ERRNO_PACK_INVALID_ADDR;
}
if (offset + len < sizeof(firmware_chunk_buf.header) + firmware_chunk_buf.header.length + sizeof(firmware_chunk_buf.signature)) {
// Don't have the full chunk yet.
return 0;
}
// Have the full chunk in firmware_chunk_buf, process it now.
// Reset the chunk base address for the next chunk that comes in.
firmware_chunk_base_addr = 0;
// Verify the signature of the chunk.
const size_t fw_len = firmware_chunk_buf.header.length;
const uint8_t *sig = &firmware_chunk_buf.data[0] + fw_len;
if (hydro_sign_verify(sig, &firmware_chunk_buf, sizeof(firmware_chunk_buf.header) + fw_len,
MBOOT_PACK_HYDRO_CONTEXT, mboot_pack_sign_public_key) != 0) {
// Signature failed
dfu_context.status = DFU_STATUS_ERROR_VERIFY;
dfu_context.error = MBOOT_ERROR_STR_INVALID_SIG_IDX;
return -MBOOT_ERRNO_PACK_SIGN_FAILED;
}
// Signature passed, we have valid chunk.
if (dry_run) {
return 0;
}
if (firmware_chunk_buf.header.format == MBOOT_PACK_CHUNK_META) {
// Ignore META chunks.
return 0;
} else if (firmware_chunk_buf.header.format == MBOOT_PACK_CHUNK_FULL_SIG) {
return mboot_pack_handle_full_sig();
} else if (firmware_chunk_buf.header.format == MBOOT_PACK_CHUNK_FW_RAW
|| firmware_chunk_buf.header.format == MBOOT_PACK_CHUNK_FW_GZIP) {
return mboot_pack_handle_firmware();
} else {
// Unsupported contents.
return -MBOOT_ERRNO_PACK_INVALID_CHUNK;
}
}
#endif // MBOOT_ENABLE_PACKING