Damien George 61339aa506 stm32: Add initial support for H5 MCUs.
This commit adds initial support for STM32H5xx MCUs.  The following
features have been confirmed to be working on an STM32H573:
- UART over REPL and USB CDC
- USB CDC and MSC
- internal flash filesystem
- machine.Pin
- machine.SPI transfers with DMA
- machine.ADC
- machine.RTC
- pyb.LED
- pyb.Switch
- pyb.rng
- mboot

Signed-off-by: Damien George <damien@micropython.org>
2023-06-15 11:09:20 +10:00

545 lines
18 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mpconfig.h"
#include "py/misc.h"
#include "py/mphal.h"
#include "flash.h"
#if defined(STM32G0)
// These are not defined on the CMSIS header
#define FLASH_FLAG_SR_ERRORS (FLASH_FLAG_OPERR | FLASH_FLAG_PROGERR | FLASH_FLAG_WRPERR | \
FLASH_FLAG_PGAERR | FLASH_FLAG_SIZERR | FLASH_FLAG_PGSERR | \
FLASH_FLAG_MISERR | FLASH_FLAG_FASTERR | FLASH_FLAG_RDERR | \
FLASH_FLAG_OPTVERR)
#if defined(FLASH_OPTR_DBANK)
#define FLASH_FLAG_ECCR_ERRORS (FLASH_FLAG_ECCC | FLASH_FLAG_ECCD | FLASH_FLAG_ECCC2 | FLASH_FLAG_ECCD2)
#else
#define FLASH_FLAG_ECCR_ERRORS (FLASH_FLAG_ECCC | FLASH_FLAG_ECCD)
#endif
#define FLASH_FLAG_ALL_ERRORS (FLASH_FLAG_SR_ERRORS | FLASH_FLAG_ECCR_ERRORS)
#endif
#if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION
// See WB55 specific documentation in AN5289 Rev 3, and in particular, Figure 10.
#include "rfcore.h"
#include "stm32wbxx_ll_hsem.h"
// Protects all flash registers.
#define SEMID_FLASH_REGISTERS (2)
// Used by CPU1 to prevent CPU2 from writing/erasing data in flash memory.
#define SEMID_FLASH_CPU1 (6)
// Used by CPU2 to prevent CPU1 from writing/erasing data in flash memory.
#define SEMID_FLASH_CPU2 (7)
#endif
typedef struct {
uint32_t base_address;
uint32_t sector_size;
uint32_t sector_count;
} flash_layout_t;
#if defined(STM32F0)
static const flash_layout_t flash_layout[] = {
{ FLASH_BASE, FLASH_PAGE_SIZE, (FLASH_BANK1_END + 1 - FLASH_BASE) / FLASH_PAGE_SIZE },
};
#elif defined(STM32F4)
static const flash_layout_t flash_layout[] = {
{ 0x08000000, 0x04000, 4 },
{ 0x08010000, 0x10000, 1 },
{ 0x08020000, 0x20000, 3 },
#if defined(FLASH_SECTOR_8)
{ 0x08080000, 0x20000, 4 },
#endif
#if defined(FLASH_SECTOR_12)
{ 0x08100000, 0x04000, 4 },
{ 0x08110000, 0x10000, 1 },
{ 0x08120000, 0x20000, 7 },
#endif
};
#elif defined(STM32F7)
// FLASH_FLAG_PGSERR (Programming Sequence Error) was renamed to
// FLASH_FLAG_ERSERR (Erasing Sequence Error) in STM32F7
#define FLASH_FLAG_PGSERR FLASH_FLAG_ERSERR
#if defined(STM32F722xx) || defined(STM32F723xx) || defined(STM32F732xx) || defined(STM32F733xx)
static const flash_layout_t flash_layout[] = {
{ 0x08000000, 0x04000, 4 },
{ 0x08010000, 0x10000, 1 },
{ 0x08020000, 0x20000, 3 },
};
#else
// This is for dual-bank mode disabled
static const flash_layout_t flash_layout[] = {
{ 0x08000000, 0x08000, 4 },
{ 0x08020000, 0x20000, 1 },
#if FLASH_SECTOR_TOTAL == 8
{ 0x08040000, 0x40000, 3 },
#else
{ 0x08040000, 0x40000, 7 },
#endif
};
#endif
#elif defined(STM32G0) || defined(STM32G4) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
static const flash_layout_t flash_layout[] = {
{ (uint32_t)FLASH_BASE, (uint32_t)FLASH_PAGE_SIZE, 512 },
};
#elif defined(STM32L1)
static const flash_layout_t flash_layout[] = {
{ (uint32_t)FLASH_BASE, 0x200, 1024 },
};
#elif defined(STM32H5)
static const flash_layout_t flash_layout[] = {
{ 0x08000000, 8192, 256 },
};
#elif defined(STM32H7)
static const flash_layout_t flash_layout[] = {
{ 0x08000000, 0x20000, 16 },
};
#else
#error Unsupported processor
#endif
#if defined(STM32H723xx) || defined(STM32H750xx)
// get the bank of a given flash address
static uint32_t get_bank(uint32_t addr) {
return FLASH_BANK_1;
}
#elif (defined(STM32L4) && defined(SYSCFG_MEMRMP_FB_MODE)) || defined(STM32H5) || defined(STM32H7)
// get the bank of a given flash address
static uint32_t get_bank(uint32_t addr) {
#if defined(STM32H5) || defined(STM32H7)
if (READ_BIT(FLASH->OPTCR, FLASH_OPTCR_SWAP_BANK) == 0) {
#else
if (READ_BIT(SYSCFG->MEMRMP, SYSCFG_MEMRMP_FB_MODE) == 0) {
#endif
// no bank swap
if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) {
return FLASH_BANK_1;
} else {
return FLASH_BANK_2;
}
} else {
// bank swap
if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) {
return FLASH_BANK_2;
} else {
return FLASH_BANK_1;
}
}
}
#if (defined(STM32L4) && defined(SYSCFG_MEMRMP_FB_MODE))
// get the page of a given flash address
static uint32_t get_page(uint32_t addr) {
if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) {
// bank 1
return (addr - FLASH_BASE) / FLASH_PAGE_SIZE;
} else {
// bank 2
return (addr - (FLASH_BASE + FLASH_BANK_SIZE)) / FLASH_PAGE_SIZE;
}
}
#endif
#elif (defined(STM32L4) && !defined(SYSCFG_MEMRMP_FB_MODE)) || defined(STM32WB) || defined(STM32WL)
static uint32_t get_page(uint32_t addr) {
return (addr - FLASH_BASE) / FLASH_PAGE_SIZE;
}
#elif defined(STM32G0) || defined(STM32G4)
static uint32_t get_page(uint32_t addr) {
return (addr - FLASH_BASE) / FLASH_PAGE_SIZE;
}
static uint32_t get_bank(uint32_t addr) {
// no bank swap
if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) {
return FLASH_BANK_1;
} else {
#if defined(FLASH_OPTR_DBANK)
return FLASH_BANK_2;
#else
return 0;
#endif
}
}
#endif
bool flash_is_valid_addr(uint32_t addr) {
uint8_t last = MP_ARRAY_SIZE(flash_layout) - 1;
uint32_t end_of_flash = flash_layout[last].base_address +
flash_layout[last].sector_count * flash_layout[last].sector_size;
return flash_layout[0].base_address <= addr && addr < end_of_flash;
}
int32_t flash_get_sector_info(uint32_t addr, uint32_t *start_addr, uint32_t *size) {
if (addr >= flash_layout[0].base_address) {
uint32_t sector_index = 0;
for (int i = 0; i < MP_ARRAY_SIZE(flash_layout); ++i) {
for (int j = 0; j < flash_layout[i].sector_count; ++j) {
uint32_t sector_start_next = flash_layout[i].base_address
+ (j + 1) * flash_layout[i].sector_size;
if (addr < sector_start_next) {
if (start_addr != NULL) {
*start_addr = flash_layout[i].base_address
+ j * flash_layout[i].sector_size;
}
if (size != NULL) {
*size = flash_layout[i].sector_size;
}
return sector_index;
}
++sector_index;
}
}
}
return -1;
}
int flash_erase(uint32_t flash_dest, uint32_t num_word32) {
// check there is something to write
if (num_word32 == 0) {
return 0;
}
#if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION
// Acquire lock on the flash peripheral.
while (LL_HSEM_1StepLock(HSEM, SEMID_FLASH_REGISTERS)) {
}
#endif
// Unlock the flash for erase.
HAL_FLASH_Unlock();
#if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION
// Tell the HCI controller stack we're starting an erase, so it
// avoids radio activity for a while.
rfcore_start_flash_erase();
// Wait for PES.
while (LL_FLASH_IsActiveFlag_OperationSuspended()) {
}
// Wait for flash lock.
while (LL_HSEM_1StepLock(HSEM, SEMID_FLASH_CPU2)) {
}
#endif
// Clear pending flags (if any) and set up EraseInitStruct.
FLASH_EraseInitTypeDef EraseInitStruct;
#if defined(STM32F0)
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR);
EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;
EraseInitStruct.PageAddress = flash_dest;
EraseInitStruct.NbPages = (4 * num_word32 + FLASH_PAGE_SIZE - 4) / FLASH_PAGE_SIZE;
#elif defined(STM32G0) || defined(STM32G4)
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS);
EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;
EraseInitStruct.Page = get_page(flash_dest);
EraseInitStruct.Banks = get_bank(flash_dest);
EraseInitStruct.NbPages = (4 * num_word32 + FLASH_PAGE_SIZE - 4) / FLASH_PAGE_SIZE;
#elif defined(STM32L0) || defined(STM32L1)
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR);
EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;
EraseInitStruct.PageAddress = flash_dest;
EraseInitStruct.NbPages = (4 * num_word32 + FLASH_PAGE_SIZE - 4) / FLASH_PAGE_SIZE;
#elif (defined(STM32L4) && !defined(SYSCFG_MEMRMP_FB_MODE)) || defined(STM32WB) || defined(STM32WL)
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS);
EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;
EraseInitStruct.Page = get_page(flash_dest);
EraseInitStruct.NbPages = (4 * num_word32 + FLASH_PAGE_SIZE - 4) / FLASH_PAGE_SIZE;
#elif defined(STM32L4)
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS);
// The sector returned by flash_get_sector_info can not be used
// as the flash has on each bank 0/1 pages 0..255
EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;
EraseInitStruct.Banks = get_bank(flash_dest);
EraseInitStruct.Page = get_page(flash_dest);
EraseInitStruct.NbPages = get_page(flash_dest + 4 * num_word32 - 1) - EraseInitStruct.Page + 1;
#else
#if defined(STM32H5)
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS);
#elif defined(STM32H7)
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS_BANK1 | FLASH_FLAG_ALL_ERRORS_BANK2);
#elif defined(STM32L1)
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR);
#else
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR |
FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR);
#endif
EraseInitStruct.TypeErase = TYPEERASE_SECTORS;
#if defined(FLASH_CR_PSIZE)
EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V
#elif !defined(STM32H5)
EraseInitStruct.VoltageRange = 0; // unused parameter on STM32H7A3/B3
#endif
#if defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7)
EraseInitStruct.Banks = get_bank(flash_dest);
#endif
EraseInitStruct.Sector = flash_get_sector_info(flash_dest, NULL, NULL);
EraseInitStruct.NbSectors = flash_get_sector_info(flash_dest + 4 * num_word32 - 1, NULL, NULL) - EraseInitStruct.Sector + 1;
#if defined(STM32H5)
EraseInitStruct.Sector &= 0x7f; // second bank should start counting at 0
#endif
#endif
// Erase the sectors.
uint32_t SectorError = 0;
HAL_StatusTypeDef status = HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError);
#if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION
// Release flash lock.
while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_CFGBSY)) {
}
LL_HSEM_ReleaseLock(HSEM, SEMID_FLASH_CPU2, 0);
// Tell HCI controller that erase is over.
rfcore_end_flash_erase();
#endif
// Lock the flash after erase.
HAL_FLASH_Lock();
#if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION
// Release lock on the flash peripheral.
LL_HSEM_ReleaseLock(HSEM, SEMID_FLASH_REGISTERS, 0);
#endif
return mp_hal_status_to_neg_errno(status);
}
/*
// erase the sector using an interrupt
void flash_erase_it(uint32_t flash_dest, uint32_t num_word32) {
// check there is something to write
if (num_word32 == 0) {
return;
}
// unlock
HAL_FLASH_Unlock();
// Clear pending flags (if any)
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR |
FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR|FLASH_FLAG_PGSERR);
// erase the sector(s)
FLASH_EraseInitTypeDef EraseInitStruct;
EraseInitStruct.TypeErase = TYPEERASE_SECTORS;
EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V
EraseInitStruct.Sector = flash_get_sector_info(flash_dest, NULL, NULL);
EraseInitStruct.NbSectors = flash_get_sector_info(flash_dest + 4 * num_word32 - 1, NULL, NULL) - EraseInitStruct.Sector + 1;
if (HAL_FLASHEx_Erase_IT(&EraseInitStruct) != HAL_OK) {
// error occurred during sector erase
HAL_FLASH_Lock(); // lock the flash
return;
}
}
*/
int flash_write(uint32_t flash_dest, const uint32_t *src, uint32_t num_word32) {
#if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION
// Acquire lock on the flash peripheral.
while (LL_HSEM_1StepLock(HSEM, SEMID_FLASH_REGISTERS)) {
}
#endif
// Unlock the flash for write.
HAL_FLASH_Unlock();
#if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION
// Wait for PES.
while (LL_FLASH_IsActiveFlag_OperationSuspended()) {
}
#endif
HAL_StatusTypeDef status = HAL_OK;
#if defined(STM32G0) || defined(STM32G4) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
// program the flash uint64 by uint64
for (int i = 0; i < num_word32 / 2; i++) {
uint64_t val = *(uint64_t *)src;
#if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION
// Wait for flash lock.
while (LL_HSEM_1StepLock(HSEM, SEMID_FLASH_CPU2)) {
}
#endif
status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, flash_dest, val);
#if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION
// Release flash lock.
LL_HSEM_ReleaseLock(HSEM, SEMID_FLASH_CPU2, 0);
while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_CFGBSY)) {
}
#endif
if (status != HAL_OK) {
num_word32 = 0; // don't write any odd word after this loop
break;
}
flash_dest += 8;
src += 2;
}
if ((num_word32 & 0x01) == 1) {
uint64_t val = *(uint64_t *)flash_dest;
val = (val & 0xffffffff00000000uL) | (*src);
#if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION
// Wait for flash lock.
while (LL_HSEM_1StepLock(HSEM, SEMID_FLASH_CPU2)) {
}
#endif
status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, flash_dest, val);
#if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION
// Release flash lock.
LL_HSEM_ReleaseLock(HSEM, SEMID_FLASH_CPU2, 0);
while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_CFGBSY)) {
}
#endif
}
#elif defined(STM32H5)
// program the flash 128 bits (4 words) at a time
for (int i = 0; i < num_word32 / 4; i++) {
status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_QUADWORD, flash_dest, (uint64_t)(uint32_t)src);
if (status != HAL_OK) {
break;
}
flash_dest += 16;
src += 4;
}
#elif defined(STM32H7)
// program the flash 256 bits at a time
for (int i = 0; i < num_word32 / 8; i++) {
status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_FLASHWORD, flash_dest, (uint64_t)(uint32_t)src);
if (status != HAL_OK) {
break;
}
flash_dest += 32;
src += 8;
}
#else
// program the flash word by word
for (int i = 0; i < num_word32; i++) {
status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, flash_dest, *src);
if (status != HAL_OK) {
break;
}
flash_dest += 4;
src += 1;
}
#endif
// Lock the flash after write.
HAL_FLASH_Lock();
#if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION
// Release lock on the flash peripheral.
LL_HSEM_ReleaseLock(HSEM, SEMID_FLASH_REGISTERS, 0);
#endif
return mp_hal_status_to_neg_errno(status);
}
/*
use erase, then write
void flash_erase_and_write(uint32_t flash_dest, const uint32_t *src, uint32_t num_word32) {
// check there is something to write
if (num_word32 == 0) {
return;
}
// unlock
HAL_FLASH_Unlock();
// Clear pending flags (if any)
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR |
FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR|FLASH_FLAG_PGSERR);
// erase the sector(s)
FLASH_EraseInitTypeDef EraseInitStruct;
EraseInitStruct.TypeErase = TYPEERASE_SECTORS;
EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V
EraseInitStruct.Sector = flash_get_sector_info(flash_dest, NULL, NULL);
EraseInitStruct.NbSectors = flash_get_sector_info(flash_dest + 4 * num_word32 - 1, NULL, NULL) - EraseInitStruct.Sector + 1;
uint32_t SectorError = 0;
if (HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError) != HAL_OK) {
// error occurred during sector erase
HAL_FLASH_Lock(); // lock the flash
return;
}
// program the flash word by word
for (int i = 0; i < num_word32; i++) {
if (HAL_FLASH_Program(TYPEPROGRAM_WORD, flash_dest, *src) != HAL_OK) {
// error occurred during flash write
HAL_FLASH_Lock(); // lock the flash
return;
}
flash_dest += 4;
src += 1;
}
// lock the flash
HAL_FLASH_Lock();
}
*/