circuitpython/ports/stm32/fdcan.c

473 lines
18 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "can.h"
#include "irq.h"
#if MICROPY_HW_ENABLE_CAN && MICROPY_HW_ENABLE_FDCAN
#define FDCAN_ELEMENT_MASK_STDID (0x1ffc0000) // Standard Identifier
#define FDCAN_ELEMENT_MASK_EXTID (0x1fffffff) // Extended Identifier
#define FDCAN_ELEMENT_MASK_RTR (0x20000000) // Remote Transmission Request
#define FDCAN_ELEMENT_MASK_XTD (0x40000000) // Extended Identifier
#define FDCAN_ELEMENT_MASK_ESI (0x80000000) // Error State Indicator
#define FDCAN_ELEMENT_MASK_TS (0x0000ffff) // Timestamp
#define FDCAN_ELEMENT_MASK_DLC (0x000f0000) // Data Length Code
#define FDCAN_ELEMENT_MASK_BRS (0x00100000) // Bit Rate Switch
#define FDCAN_ELEMENT_MASK_FDF (0x00200000) // FD Format
#define FDCAN_ELEMENT_MASK_FIDX (0x7f000000) // Filter Index
#define FDCAN_ELEMENT_MASK_ANMF (0x80000000) // Accepted Non-matching Frame
#define FDCAN_RX_FIFO0_MASK (FDCAN_FLAG_RX_FIFO0_MESSAGE_LOST | FDCAN_FLAG_RX_FIFO0_FULL | FDCAN_FLAG_RX_FIFO0_NEW_MESSAGE)
#define FDCAN_RX_FIFO1_MASK (FDCAN_FLAG_RX_FIFO1_MESSAGE_LOST | FDCAN_FLAG_RX_FIFO1_FULL | FDCAN_FLAG_RX_FIFO1_NEW_MESSAGE)
#define FDCAN_ERROR_STATUS_MASK (FDCAN_FLAG_ERROR_PASSIVE | FDCAN_FLAG_ERROR_WARNING | FDCAN_FLAG_BUS_OFF)
#if defined(STM32H7)
// adaptations for H7 to G4 naming convention in HAL
#define FDCAN_IT_GROUP_RX_FIFO0 (FDCAN_ILS_RF0NL | FDCAN_ILS_RF0FL | FDCAN_ILS_RF0LL)
#define FDCAN_IT_GROUP_BIT_LINE_ERROR (FDCAN_ILS_EPE | FDCAN_ILS_ELOE)
#define FDCAN_IT_GROUP_PROTOCOL_ERROR (FDCAN_ILS_ARAE | FDCAN_ILS_PEDE | FDCAN_ILS_PEAE | FDCAN_ILS_WDIE | FDCAN_ILS_BOE | FDCAN_ILS_EWE)
#define FDCAN_IT_GROUP_RX_FIFO1 (FDCAN_ILS_RF1NL | FDCAN_ILS_RF1FL | FDCAN_ILS_RF1LL)
#endif
// The dedicated Message RAM should be 2560 words, but the way it's defined in stm32h7xx_hal_fdcan.c
// as (SRAMCAN_BASE + FDCAN_MESSAGE_RAM_SIZE - 0x4U) limits the usable number of words to 2559 words.
#define FDCAN_MESSAGE_RAM_SIZE (2560 - 1)
// also defined in <PROC>_hal_fdcan.c, but not able to declare extern and reach the variable
const uint8_t DLCtoBytes[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64};
bool can_init(pyb_can_obj_t *can_obj, uint32_t mode, uint32_t prescaler, uint32_t sjw, uint32_t bs1, uint32_t bs2, bool auto_restart) {
(void)auto_restart;
FDCAN_InitTypeDef *init = &can_obj->can.Init;
// Configure FDCAN with FD frame and BRS support.
init->FrameFormat = FDCAN_FRAME_FD_BRS;
init->Mode = mode;
init->NominalPrescaler = prescaler; // tq = NominalPrescaler x (1/fdcan_ker_ck)
init->NominalSyncJumpWidth = sjw;
init->NominalTimeSeg1 = bs1; // NominalTimeSeg1 = Propagation_segment + Phase_segment_1
init->NominalTimeSeg2 = bs2;
init->AutoRetransmission = ENABLE;
init->TransmitPause = DISABLE;
init->ProtocolException = ENABLE;
#if defined(STM32G4)
init->ClockDivider = FDCAN_CLOCK_DIV1;
init->DataPrescaler = 1;
init->DataSyncJumpWidth = 1;
init->DataTimeSeg1 = 1;
init->DataTimeSeg2 = 1;
init->StdFiltersNbr = 28; // /2 ? if FDCAN2 is used !!?
init->ExtFiltersNbr = 0; // Not used
init->TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
#elif defined(STM32H7)
// The dedicated FDCAN RAM is 2560 32-bit words and shared between the FDCAN instances.
// To support 2 FDCAN instances simultaneously, the Message RAM is divided in half by
// setting the second FDCAN memory offset to half the RAM size. With this configuration,
// the maximum words per FDCAN instance is 1280 32-bit words.
if (can_obj->can_id == PYB_CAN_1) {
init->MessageRAMOffset = 0;
} else {
init->MessageRAMOffset = FDCAN_MESSAGE_RAM_SIZE / 2;
}
// An element stored in the Message RAM contains an identifier, DLC, control bits, the
// data field and the specific transmission or reception bits field for control.
// The following code configures the different Message RAM sections per FDCAN instance.
// The RAM filtering section is configured for 64 x 1 word elements for 11-bit standard
// identifiers, and 31 x 2 words elements for 29-bit extended identifiers.
// The total number of words reserved for the filtering per FDCAN instance is 126 words.
init->StdFiltersNbr = 64;
init->ExtFiltersNbr = 31;
// The Tx event FIFO is used to store the message ID and the timestamp of successfully
// transmitted elements. The Tx event FIFO can store a maximum of 32 (2 words) elements.
// NOTE: Events are stored in Tx event FIFO only if tx_msg.TxEventFifoControl is enabled.
init->TxEventsNbr = 0;
// Transmission section is configured in FIFO mode operation, with no dedicated Tx buffers.
// The Tx FIFO can store a maximum of 32 elements (or 576 words), each element is 18 words
// long (to support a maximum of 64 bytes data field):
// 2 words header + 16 words data field (to support up to 64 bytes of data).
// The total number of words reserved for the Tx FIFO per FDCAN instance is 288 words.
init->TxBuffersNbr = 0;
init->TxFifoQueueElmtsNbr = 16;
init->TxElmtSize = FDCAN_DATA_BYTES_64;
init->TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
// Reception section is configured to use Rx FIFO 0 and Rx FIFO1, with no dedicated Rx buffers.
// Each Rx FIFO can store a maximum of 64 elements (1152 words), each element is 18 words
// long (to support a maximum of 64 bytes data field):
// 2 words header + 16 words data field (to support up to 64 bytes of data).
// The total number of words reserved for the Rx FIFOs per FDCAN instance is 864 words.
init->RxBuffersNbr = 0;
init->RxFifo0ElmtsNbr = 24;
init->RxFifo0ElmtSize = FDCAN_DATA_BYTES_64;
init->RxFifo1ElmtsNbr = 24;
init->RxFifo1ElmtSize = FDCAN_DATA_BYTES_64;
#endif
FDCAN_GlobalTypeDef *CANx = NULL;
const pin_obj_t *pins[2];
switch (can_obj->can_id) {
#if defined(MICROPY_HW_CAN1_TX)
case PYB_CAN_1:
CANx = FDCAN1;
pins[0] = MICROPY_HW_CAN1_TX;
pins[1] = MICROPY_HW_CAN1_RX;
break;
#endif
#if defined(MICROPY_HW_CAN2_TX)
case PYB_CAN_2:
CANx = FDCAN2;
pins[0] = MICROPY_HW_CAN2_TX;
pins[1] = MICROPY_HW_CAN2_RX;
break;
#endif
default:
return false;
}
// Enable FDCAN clock
__HAL_RCC_FDCAN_CLK_ENABLE();
// init GPIO
uint32_t pin_mode = MP_HAL_PIN_MODE_ALT;
uint32_t pin_pull = MP_HAL_PIN_PULL_UP;
for (int i = 0; i < 2; ++i) {
if (!mp_hal_pin_config_alt(pins[i], pin_mode, pin_pull, AF_FN_CAN, can_obj->can_id)) {
return false;
}
}
// init CANx
can_obj->can.Instance = CANx;
// catch bad configuration errors.
if (HAL_FDCAN_Init(&can_obj->can) != HAL_OK) {
return false;
}
// Disable acceptance of non-matching frames (enabled by default)
HAL_FDCAN_ConfigGlobalFilter(&can_obj->can, FDCAN_REJECT, FDCAN_REJECT, DISABLE, DISABLE);
// The configuration registers are locked after CAN is started.
HAL_FDCAN_Start(&can_obj->can);
// Reset all filters
for (int f = 0; f < init->StdFiltersNbr; ++f) {
can_clearfilter(can_obj, f, false);
}
for (int f = 0; f < init->ExtFiltersNbr; ++f) {
can_clearfilter(can_obj, f, true);
}
can_obj->is_enabled = true;
can_obj->num_error_warning = 0;
can_obj->num_error_passive = 0;
can_obj->num_bus_off = 0;
switch (can_obj->can_id) {
case PYB_CAN_1:
NVIC_SetPriority(FDCAN1_IT0_IRQn, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(FDCAN1_IT0_IRQn);
NVIC_SetPriority(FDCAN1_IT1_IRQn, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(FDCAN1_IT1_IRQn);
break;
#if defined(MICROPY_HW_CAN2_TX)
case PYB_CAN_2:
NVIC_SetPriority(FDCAN2_IT0_IRQn, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(FDCAN2_IT0_IRQn);
NVIC_SetPriority(FDCAN2_IT1_IRQn, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(FDCAN2_IT1_IRQn);
break;
#endif
default:
return false;
}
// FDCAN IT 0
HAL_FDCAN_ConfigInterruptLines(&can_obj->can, FDCAN_IT_GROUP_RX_FIFO0 | FDCAN_IT_GROUP_BIT_LINE_ERROR | FDCAN_IT_GROUP_PROTOCOL_ERROR, FDCAN_INTERRUPT_LINE0);
// FDCAN IT 1
HAL_FDCAN_ConfigInterruptLines(&can_obj->can, FDCAN_IT_GROUP_RX_FIFO1, FDCAN_INTERRUPT_LINE1);
uint32_t ActiveITs = FDCAN_IT_BUS_OFF | FDCAN_IT_ERROR_WARNING | FDCAN_IT_ERROR_PASSIVE;
ActiveITs |= FDCAN_IT_RX_FIFO0_NEW_MESSAGE | FDCAN_IT_RX_FIFO1_NEW_MESSAGE;
ActiveITs |= FDCAN_IT_RX_FIFO0_MESSAGE_LOST | FDCAN_IT_RX_FIFO1_MESSAGE_LOST;
ActiveITs |= FDCAN_IT_RX_FIFO0_FULL | FDCAN_IT_RX_FIFO1_FULL;
HAL_FDCAN_ActivateNotification(&can_obj->can, ActiveITs, 0);
return true;
}
void can_deinit(pyb_can_obj_t *self) {
self->is_enabled = false;
HAL_FDCAN_DeInit(&self->can);
if (self->can.Instance == FDCAN1) {
HAL_NVIC_DisableIRQ(FDCAN1_IT0_IRQn);
HAL_NVIC_DisableIRQ(FDCAN1_IT1_IRQn);
// TODO check if FDCAN2 is used.
__HAL_RCC_FDCAN_FORCE_RESET();
__HAL_RCC_FDCAN_RELEASE_RESET();
__HAL_RCC_FDCAN_CLK_DISABLE();
#if defined(MICROPY_HW_CAN2_TX)
} else if (self->can.Instance == FDCAN2) {
HAL_NVIC_DisableIRQ(FDCAN2_IT0_IRQn);
HAL_NVIC_DisableIRQ(FDCAN2_IT1_IRQn);
// TODO check if FDCAN2 is used.
__HAL_RCC_FDCAN_FORCE_RESET();
__HAL_RCC_FDCAN_RELEASE_RESET();
__HAL_RCC_FDCAN_CLK_DISABLE();
#endif
}
}
void can_clearfilter(pyb_can_obj_t *self, uint32_t f, uint8_t extid) {
if (self && self->can.Instance) {
FDCAN_FilterTypeDef filter = {0};
if (extid == 1) {
filter.IdType = FDCAN_EXTENDED_ID;
} else {
filter.IdType = FDCAN_STANDARD_ID;
}
filter.FilterIndex = f;
filter.FilterConfig = FDCAN_FILTER_DISABLE;
HAL_FDCAN_ConfigFilter(&self->can, &filter);
}
}
int can_receive(FDCAN_HandleTypeDef *can, int fifo, FDCAN_RxHeaderTypeDef *hdr, uint8_t *data, uint32_t timeout_ms) {
volatile uint32_t *rxf, *rxa;
uint32_t fl;
if (fifo == FDCAN_RX_FIFO0) {
rxf = &can->Instance->RXF0S;
rxa = &can->Instance->RXF0A;
fl = FDCAN_RXF0S_F0FL;
} else {
rxf = &can->Instance->RXF1S;
rxa = &can->Instance->RXF1A;
fl = FDCAN_RXF1S_F1FL;
}
// Wait for a message to become available, with timeout
uint32_t start = HAL_GetTick();
while ((*rxf & fl) == 0) {
if (timeout_ms != HAL_MAX_DELAY) {
if (HAL_GetTick() - start >= timeout_ms) {
return -MP_ETIMEDOUT;
}
}
MICROPY_EVENT_POLL_HOOK
}
// Get pointer to incoming message
uint32_t index, *address;
if (fifo == FDCAN_RX_FIFO0) {
index = (*rxf & FDCAN_RXF0S_F0GI) >> FDCAN_RXF0S_F0GI_Pos;
#if defined(STM32G4)
address = (uint32_t *)(can->msgRam.RxFIFO0SA + (index * (18U * 4U))); // SRAMCAN_RF0_SIZE bytes, size not configurable
#else
address = (uint32_t *)(can->msgRam.RxFIFO0SA + (index * can->Init.RxFifo0ElmtSize * 4));
#endif
} else {
index = (*rxf & FDCAN_RXF1S_F1GI) >> FDCAN_RXF1S_F1GI_Pos;
#if defined(STM32G4)
// ToDo: test FIFO1, FIFO 0 is ok
address = (uint32_t *)(can->msgRam.RxFIFO1SA + (index * (18U * 4U))); // SRAMCAN_RF1_SIZE bytes, size not configurable
#else
address = (uint32_t *)(can->msgRam.RxFIFO1SA + (index * can->Init.RxFifo1ElmtSize * 4));
#endif
}
// Parse header of message
hdr->IdType = *address & FDCAN_ELEMENT_MASK_XTD;
if (hdr->IdType == FDCAN_STANDARD_ID) {
hdr->Identifier = (*address & FDCAN_ELEMENT_MASK_STDID) >> 18;
} else {
hdr->Identifier = *address & FDCAN_ELEMENT_MASK_EXTID;
}
hdr->RxFrameType = *address & FDCAN_ELEMENT_MASK_RTR;
hdr->ErrorStateIndicator = *address++ & FDCAN_ELEMENT_MASK_ESI;
hdr->RxTimestamp = *address & FDCAN_ELEMENT_MASK_TS;
hdr->DataLength = (*address & FDCAN_ELEMENT_MASK_DLC) >> 16;
hdr->BitRateSwitch = *address & FDCAN_ELEMENT_MASK_BRS;
hdr->FDFormat = *address & FDCAN_ELEMENT_MASK_FDF;
hdr->FilterIndex = (*address & FDCAN_ELEMENT_MASK_FIDX) >> 24;
hdr->IsFilterMatchingFrame = (*address++ & FDCAN_ELEMENT_MASK_ANMF) >> 31;
// Convert DLC to Bytes.
hdr->DataLength = DLCtoBytes[hdr->DataLength];
// Copy data
uint8_t *pdata = (uint8_t *)address;
for (uint32_t i = 0; i < hdr->DataLength; ++i) {
*data++ = *pdata++;
}
// Release (free) message from FIFO
*rxa = index;
return 0; // success
}
STATIC void can_rx_irq_handler(uint can_id, uint fifo_id) {
mp_obj_t callback;
pyb_can_obj_t *self;
mp_obj_t irq_reason = MP_OBJ_NEW_SMALL_INT(0);
byte *state;
self = MP_STATE_PORT(pyb_can_obj_all)[can_id - 1];
CAN_TypeDef *can = self->can.Instance;
uint32_t RxFifo0ITs;
uint32_t RxFifo1ITs;
// uint32_t Errors;
uint32_t ErrorStatusITs;
uint32_t Psr;
RxFifo0ITs = can->IR & FDCAN_RX_FIFO0_MASK;
RxFifo0ITs &= can->IE;
RxFifo1ITs = can->IR & FDCAN_RX_FIFO1_MASK;
RxFifo1ITs &= can->IE;
// Errors = (&self->can)->Instance->IR & FDCAN_ERROR_MASK;
// Errors &= (&self->can)->Instance->IE;
ErrorStatusITs = can->IR & FDCAN_ERROR_STATUS_MASK;
ErrorStatusITs &= can->IE;
Psr = can->PSR;
if (fifo_id == FDCAN_RX_FIFO0) {
callback = self->rxcallback0;
state = &self->rx_state0;
if (RxFifo0ITs & FDCAN_FLAG_RX_FIFO0_NEW_MESSAGE) {
__HAL_FDCAN_DISABLE_IT(&self->can, FDCAN_IT_RX_FIFO0_NEW_MESSAGE);
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_RX_FIFO0_NEW_MESSAGE);
irq_reason = MP_OBJ_NEW_SMALL_INT(0);
*state = RX_STATE_MESSAGE_PENDING;
}
if (RxFifo0ITs & FDCAN_FLAG_RX_FIFO0_FULL) {
__HAL_FDCAN_DISABLE_IT(&self->can, FDCAN_IT_RX_FIFO0_FULL);
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_RX_FIFO0_FULL);
irq_reason = MP_OBJ_NEW_SMALL_INT(1);
*state = RX_STATE_FIFO_FULL;
}
if (RxFifo0ITs & FDCAN_FLAG_RX_FIFO0_MESSAGE_LOST) {
__HAL_FDCAN_DISABLE_IT(&self->can, FDCAN_IT_RX_FIFO0_MESSAGE_LOST);
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_RX_FIFO0_MESSAGE_LOST);
irq_reason = MP_OBJ_NEW_SMALL_INT(2);
*state = RX_STATE_FIFO_OVERFLOW;
}
} else {
callback = self->rxcallback1;
state = &self->rx_state1;
if (RxFifo1ITs & FDCAN_FLAG_RX_FIFO1_NEW_MESSAGE) {
__HAL_FDCAN_DISABLE_IT(&self->can, FDCAN_IT_RX_FIFO1_NEW_MESSAGE);
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_RX_FIFO1_NEW_MESSAGE);
irq_reason = MP_OBJ_NEW_SMALL_INT(0);
*state = RX_STATE_MESSAGE_PENDING;
}
if (RxFifo1ITs & FDCAN_FLAG_RX_FIFO1_FULL) {
__HAL_FDCAN_DISABLE_IT(&self->can, FDCAN_IT_RX_FIFO1_FULL);
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_RX_FIFO1_FULL);
irq_reason = MP_OBJ_NEW_SMALL_INT(1);
*state = RX_STATE_FIFO_FULL;
}
if (RxFifo1ITs & FDCAN_FLAG_RX_FIFO1_MESSAGE_LOST) {
__HAL_FDCAN_DISABLE_IT(&self->can, FDCAN_IT_RX_FIFO1_MESSAGE_LOST);
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_RX_FIFO1_MESSAGE_LOST);
irq_reason = MP_OBJ_NEW_SMALL_INT(2);
*state = RX_STATE_FIFO_OVERFLOW;
}
}
if (ErrorStatusITs & FDCAN_FLAG_ERROR_WARNING) {
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_ERROR_WARNING);
if (Psr & FDCAN_PSR_EW) {
irq_reason = MP_OBJ_NEW_SMALL_INT(3);
// mp_printf(MICROPY_ERROR_PRINTER, "clear warning %08x\n", (can->IR & FDCAN_ERROR_STATUS_MASK));
}
}
if (ErrorStatusITs & FDCAN_FLAG_ERROR_PASSIVE) {
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_ERROR_PASSIVE);
if (Psr & FDCAN_PSR_EP) {
irq_reason = MP_OBJ_NEW_SMALL_INT(4);
// mp_printf(MICROPY_ERROR_PRINTER, "clear passive %08x\n", (can->IR & FDCAN_ERROR_STATUS_MASK));
}
}
if (ErrorStatusITs & FDCAN_FLAG_BUS_OFF) {
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_BUS_OFF);
if (Psr & FDCAN_PSR_BO) {
irq_reason = MP_OBJ_NEW_SMALL_INT(5);
// mp_printf(MICROPY_ERROR_PRINTER, "bus off %08x\n", (can->IR & FDCAN_ERROR_STATUS_MASK));
}
}
pyb_can_handle_callback(self, fifo_id, callback, irq_reason);
// mp_printf(MICROPY_ERROR_PRINTER, "Ints: %08x, %08x, %08x\n", RxFifo0ITs, RxFifo1ITs, ErrorStatusITs);
}
#if defined(MICROPY_HW_CAN1_TX)
void FDCAN1_IT0_IRQHandler(void) {
IRQ_ENTER(FDCAN1_IT0_IRQn);
can_rx_irq_handler(PYB_CAN_1, FDCAN_RX_FIFO0);
IRQ_EXIT(FDCAN1_IT0_IRQn);
}
void FDCAN1_IT1_IRQHandler(void) {
IRQ_ENTER(FDCAN1_IT1_IRQn);
can_rx_irq_handler(PYB_CAN_1, FDCAN_RX_FIFO1);
IRQ_EXIT(FDCAN1_IT1_IRQn);
}
#endif
#if defined(MICROPY_HW_CAN2_TX)
void FDCAN2_IT0_IRQHandler(void) {
IRQ_ENTER(FDCAN2_IT0_IRQn);
can_rx_irq_handler(PYB_CAN_2, FDCAN_RX_FIFO0);
IRQ_EXIT(FDCAN2_IT0_IRQn);
}
void FDCAN2_IT1_IRQHandler(void) {
IRQ_ENTER(FDCAN2_IT1_IRQn);
can_rx_irq_handler(PYB_CAN_2, FDCAN_RX_FIFO1);
IRQ_EXIT(FDCAN2_IT1_IRQn);
}
#endif
#endif // MICROPY_HW_ENABLE_CAN && MICROPY_HW_ENABLE_FDCAN