circuitpython/cc3200/mods/pybuart.c
danicampora 9e44383e3f cc3200: Add power management framework. Add mpcallback class.
Supports suspend and hibernate modes. Waking is possible throug GPIO
and WLAN.
The mpcallback class is generic and can be reused by other classes.
2015-03-11 17:00:33 +01:00

688 lines
24 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Daniel Campora
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include "py/mpconfig.h"
#include MICROPY_HAL_H
#include "py/obj.h"
#include "py/runtime.h"
#include "py/objlist.h"
#include "py/stream.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_uart.h"
#include "rom_map.h"
#include "interrupt.h"
#include "prcm.h"
#include "uart.h"
#include "pybuart.h"
#include "pybioctl.h"
#include "pybsleep.h"
#include "mpexception.h"
#include "py/mpstate.h"
#include "osi.h"
/// \moduleref pyb
/// \class UART - duplex serial communication bus
///
/// UART implements the standard UART/USART duplex serial communications protocol. At
/// the physical level it consists of 2 lines: RX and TX.
///
/// UART objects can be created and initialised using:
///
/// from pyb import UART
///
/// uart = UART(0, 9600) # init with given baudrate
/// uart.init(9600, bits=8, stop=1, parity=None) # init with given parameters
///
/// Bits can be 5, 6, 7, 8, parity can be None, 0 (even), 1 (odd). Stop can be 1 or 2.
///
/// A UART object acts like a stream object and reading and writing is done
/// using the standard stream methods:
///
/// uart.read(10) # read 10 characters, returns a bytes object
/// uart.readall() # read all available characters
/// uart.readline() # read a line
/// uart.readinto(buf) # read and store into the given buffer
/// uart.write('abc') # write the 3 characters
///
/// Individual characters can be read/written using:
///
/// uart.readchar() # read 1 character and returns it as an integer
/// uart.writechar(42) # write 1 character
///
/// To check if there is anything to be read, use:
///
/// uart.any() # returns True if any characters waiting
/******************************************************************************
DEFINE CONSTANTS
******************************************************************************/
#define PYBUART_TX_WAIT_MS 1
#define PYBUART_TX_MAX_TIMEOUT_MS 5
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
STATIC void uart_init (pyb_uart_obj_t *self);
STATIC bool uart_rx_wait (pyb_uart_obj_t *self, uint32_t timeout);
STATIC pyb_uart_obj_t* pyb_uart_add (pyb_uart_id_t uart_id);
STATIC pyb_uart_obj_t* pyb_uart_find (pyb_uart_id_t uart_id);
STATIC void UARTGenericIntHandler(uint32_t uart_id);
STATIC void UART0IntHandler(void);
STATIC void UART1IntHandler(void);
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in);
/******************************************************************************
DEFINE PRIVATE TYPES
******************************************************************************/
struct _pyb_uart_obj_t {
mp_obj_base_t base;
pyb_uart_id_t uart_id;
uint reg;
uint baudrate;
uint config;
uint flowcontrol;
byte *read_buf; // read buffer pointer
uint16_t timeout; // timeout waiting for first char
uint16_t timeout_char; // timeout waiting between chars
uint16_t read_buf_len; // len in chars; buf can hold len-1 chars
volatile uint16_t read_buf_head; // indexes first empty slot
uint16_t read_buf_tail; // indexes first full slot (not full if equals head)
bool enabled;
};
/******************************************************************************
DEFINE PUBLIC FUNCTIONS
******************************************************************************/
void uart_init0 (void) {
mp_obj_list_init(&MP_STATE_PORT(pyb_uart_list), 0);
}
// unregister all interrupt sources
void uart_deinit(void) {
for (int i = PYB_UART_0; i < PYB_NUM_UARTS; i++) {
pyb_uart_obj_t *self;
if ((self = pyb_uart_find (i))) {
pyb_uart_deinit(self);
}
}
}
bool uart_rx_any(pyb_uart_obj_t *self) {
return (self->read_buf_tail != self->read_buf_head || MAP_UARTCharsAvail(self->reg));
}
int uart_rx_char(pyb_uart_obj_t *self) {
if (self->read_buf_tail != self->read_buf_head) {
// buffering via IRQ
int data = self->read_buf[self->read_buf_tail];
self->read_buf_tail = (self->read_buf_tail + 1) % self->read_buf_len;
return data;
} else {
// no buffering
return MAP_UARTCharGetNonBlocking(self->reg);
}
}
bool uart_tx_char(pyb_uart_obj_t *self, int c) {
uint32_t timeout = 0;
while (!MAP_UARTCharPutNonBlocking(self->reg, c)) {
if (timeout++ > (PYBUART_TX_MAX_TIMEOUT_MS / PYBUART_TX_WAIT_MS)) {
return false;
}
HAL_Delay (PYBUART_TX_WAIT_MS);
}
return true;
}
bool uart_tx_strn(pyb_uart_obj_t *self, const char *str, uint len) {
for (const char *top = str + len; str < top; str++) {
if (!uart_tx_char(self, *str)) {
return false;
}
}
return true;
}
void uart_tx_strn_cooked(pyb_uart_obj_t *self, const char *str, uint len) {
for (const char *top = str + len; str < top; str++) {
if (*str == '\n') {
uart_tx_char(self, '\r');
}
uart_tx_char(self, *str);
}
}
/******************************************************************************
DEFINE PRIVATE FUNCTIONS
******************************************************************************/
// assumes init parameters have been set up correctly
STATIC void uart_init (pyb_uart_obj_t *self) {
uint uartPerh;
switch (self->uart_id) {
case PYB_UART_0:
self->reg = UARTA0_BASE;
uartPerh = PRCM_UARTA0;
MAP_UARTIntRegister(UARTA0_BASE, UART0IntHandler);
MAP_IntPrioritySet(INT_UARTA0, INT_PRIORITY_LVL_3);
break;
case PYB_UART_1:
self->reg = UARTA1_BASE;
uartPerh = PRCM_UARTA1;
MAP_UARTIntRegister(UARTA1_BASE, UART1IntHandler);
MAP_IntPrioritySet(INT_UARTA1, INT_PRIORITY_LVL_3);
break;
default:
return;
}
// Enable the peripheral clock
MAP_PRCMPeripheralClkEnable(uartPerh, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
// Reset the uart
MAP_PRCMPeripheralReset(uartPerh);
// Initialize the UART
MAP_UARTConfigSetExpClk(self->reg, MAP_PRCMPeripheralClockGet(uartPerh),
self->baudrate, self->config);
// Enbale the FIFO
MAP_UARTFIFOEnable(self->reg);
// Configure the FIFO interrupt levels
MAP_UARTFIFOLevelSet(self->reg, UART_FIFO_TX4_8, UART_FIFO_RX4_8);
// Configure the flow control mode
UARTFlowControlSet(self->reg, self->flowcontrol);
// Setup the RX interrupts
if (self->read_buf != NULL) {
MAP_UARTIntEnable(self->reg, UART_INT_RX | UART_INT_RT);
}
else {
MAP_UARTIntDisable(self->reg, UART_INT_RX | UART_INT_RT);
}
}
// Waits at most timeout milliseconds for at least 1 char to become ready for
// reading (from buf or for direct reading).
// Returns true if something available, false if not.
STATIC bool uart_rx_wait (pyb_uart_obj_t *self, uint32_t timeout) {
for (;;) {
if (uart_rx_any(self)) {
return true; // have at least 1 char ready for reading
}
if (timeout > 0) {
HAL_Delay (1);
timeout--;
}
else {
return false;
}
}
}
STATIC pyb_uart_obj_t* pyb_uart_add (pyb_uart_id_t uart_id) {
// create a new uart object
pyb_uart_obj_t *self = m_new_obj(pyb_uart_obj_t);
self->base.type = &pyb_uart_type;
self->uart_id = uart_id;
self->read_buf = NULL;
self->enabled = false;
// add it to the list
mp_obj_list_append(&MP_STATE_PORT(pyb_uart_list), self);
return self;
}
STATIC pyb_uart_obj_t* pyb_uart_find (pyb_uart_id_t uart_id) {
for (mp_uint_t i = 0; i < MP_STATE_PORT(pyb_uart_list).len; i++) {
pyb_uart_obj_t *self = (pyb_uart_obj_t *)MP_STATE_PORT(pyb_uart_list).items[i];
if (self->uart_id == uart_id) {
return self;
}
}
return NULL;
}
STATIC void UARTGenericIntHandler(uint32_t uart_id) {
pyb_uart_obj_t *self;
uint32_t status;
if ((self = pyb_uart_find(uart_id))) {
status = MAP_UARTIntStatus(self->reg, true);
// receive interrupt
if (status & (UART_INT_RX | UART_INT_RT)) {
MAP_UARTIntClear(self->reg, UART_INT_RX | UART_INT_RT);
while (UARTCharsAvail(self->reg)) {
int data = MAP_UARTCharGetNonBlocking(self->reg);
if (MICROPY_STDIO_UART == self->uart_id && data == user_interrupt_char) {
// raise exception when interrupts are finished
mpexception_keyboard_nlr_jump();
}
else if (self->read_buf_len != 0) {
uint16_t next_head = (self->read_buf_head + 1) % self->read_buf_len;
if (next_head != self->read_buf_tail) {
// only store data if room in buf
self->read_buf[self->read_buf_head] = data;
self->read_buf_head = next_head;
}
}
}
}
}
}
STATIC void UART0IntHandler(void) {
UARTGenericIntHandler(0);
}
STATIC void UART1IntHandler(void) {
UARTGenericIntHandler(1);
}
/******************************************************************************/
/* Micro Python bindings */
STATIC void pyb_uart_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_uart_obj_t *self = self_in;
if (!self->enabled) {
print(env, "<UART%u>", self->uart_id);
} else {
print(env, "<UART%u, baudrate=%u, bits=", self->uart_id, self->baudrate);
switch (self->config & UART_CONFIG_WLEN_MASK) {
case UART_CONFIG_WLEN_5:
print(env, "5");
break;
case UART_CONFIG_WLEN_6:
print(env, "6");
break;
case UART_CONFIG_WLEN_7:
print(env, "7");
break;
case UART_CONFIG_WLEN_8:
print(env, "8");
break;
default:
break;
}
if ((self->config & UART_CONFIG_PAR_MASK) == UART_CONFIG_PAR_NONE) {
print(env, ", parity=None");
} else {
print(env, ", parity=%u", (self->config & UART_CONFIG_PAR_MASK) == UART_CONFIG_PAR_EVEN ? 0 : 1);
}
print(env, ", stop=%u, timeout=%u, timeout_char=%u, read_buf_len=%u>",
(self->config & UART_CONFIG_STOP_MASK) == UART_CONFIG_STOP_ONE ? 1 : 2,
self->timeout, self->timeout_char, self->read_buf_len);
}
}
/// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, read_buf_len=128)
///
/// Initialise the UART bus with the given parameters:
///
/// - `baudrate` is the clock rate.
/// - `bits` is the number of bits per byte, 7, 8 or 9.
/// - `parity` is the parity, `None`, 0 (even) or 1 (odd).
/// - `stop` is the number of stop bits, 1 or 2.
/// - `flowcontrol` is the flow control mode, `None`, `UART.FLOW_TX`,
/// `UART.FLOW_RX', 'UART.FLOW_TXRX`.
/// - `timeout` is the timeout in milliseconds to wait for the first character.
/// - `timeout_char` is the timeout in milliseconds to wait between characters.
/// - `read_buf_len` is the character length of the read buffer (0 to disable).
STATIC const mp_arg_t pyb_uart_init_args[] = {
{ MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_parity, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_stop, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_int = UART_FLOWCONTROL_NONE} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 128} },
};
STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(pyb_uart_init_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(pyb_uart_init_args), pyb_uart_init_args, args);
// set timeouts
self->timeout = args[5].u_int;
self->timeout_char = args[6].u_int;
// setup the read buffer
m_del(byte, self->read_buf, self->read_buf_len);
self->read_buf_head = 0;
self->read_buf_tail = 0;
if (args[7].u_int <= 0) {
// no read buffer
self->read_buf_len = 0;
self->read_buf = NULL;
}
else {
// read buffer using interrupts
self->read_buf_len = args[7].u_int;
self->read_buf = m_new(byte, args[7].u_int);
}
// get the baudrate
self->baudrate = args[0].u_int;
// set the UART configuration values
if (n_args > 1) {
switch (args[1].u_int) {
case 5:
self->config = UART_CONFIG_WLEN_5;
break;
case 6:
self->config = UART_CONFIG_WLEN_6;
break;
case 7:
self->config = UART_CONFIG_WLEN_7;
break;
case 8:
self->config = UART_CONFIG_WLEN_8;
break;
default:
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
break;
}
// Parity
if (args[2].u_obj == mp_const_none) {
self->config |= UART_CONFIG_PAR_NONE;
} else {
self->config |= ((mp_obj_get_int(args[2].u_obj) & 1) ? UART_CONFIG_PAR_ODD : UART_CONFIG_PAR_EVEN);
}
// Stop bits
self->config |= (args[3].u_int == 1 ? UART_CONFIG_STOP_ONE : UART_CONFIG_STOP_TWO);
// Flow control
self->flowcontrol = args[4].u_int;
}
else {
self->config = UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE;
self->flowcontrol = UART_FLOWCONTROL_NONE;
}
// initialize and enable the uart
uart_init (self);
self->enabled = true;
// register it with the sleep module
pybsleep_add ((const mp_obj_t)self, (WakeUpCB_t)uart_init);
return mp_const_none;
}
/// \classmethod \constructor(bus, ...)
///
/// Construct a UART object on the given bus id. `bus id` can be 0-1
/// With no additional parameters, the UART object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).
/// When only the baud rate is given the UART object is created and
/// initialized with the default configuration of: 8 bit transfers,
/// 1 stop bit, no parity and flow control disabled.
/// See `init` for parameters of initialisation.
/// If extra arguments are given, the bus is initialised with these arguments
/// See `init` for parameters of initialisation.
///
STATIC mp_obj_t pyb_uart_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_ARRAY_SIZE(pyb_uart_init_args), true);
// work out the uart id
pyb_uart_id_t uart_id = mp_obj_get_int(args[0]);
if (uart_id < PYB_UART_0 || uart_id > PYB_UART_1) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_resource_not_avaliable));
}
// search for an object in the list
pyb_uart_obj_t *self;
if (!(self = pyb_uart_find(uart_id))) {
self = pyb_uart_add(uart_id);
}
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
}
return self;
}
STATIC mp_obj_t pyb_uart_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init);
/// \method deinit()
/// Turn off the UART bus.
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
uint uartPerh;
switch (self->uart_id) {
case PYB_UART_0:
uartPerh = PRCM_UARTA0;
break;
case PYB_UART_1:
uartPerh = PRCM_UARTA1;
break;
default:
return mp_const_none;
}
// unregister it with the sleep module
pybsleep_remove (self);
self->enabled = false;
MAP_UARTIntDisable(self->reg, UART_INT_RX | UART_INT_RT);
MAP_UARTIntClear(self->reg, UART_INT_RX | UART_INT_RT);
MAP_UARTIntUnregister(self->reg);
MAP_UARTDisable(self->reg);
MAP_PRCMPeripheralClkDisable(uartPerh, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit);
/// \method delete()
/// Deinits the UART and removes its references so that it can be cleaned by the gc
STATIC mp_obj_t pyb_uart_delete(mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
// deinit the peripheral
pyb_uart_deinit(self);
// remove it from the list
mp_obj_list_remove(&MP_STATE_PORT(pyb_uart_list), self);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_delete_obj, pyb_uart_delete);
/// \method any()
/// Return `True` if any characters waiting, else `False`.
STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
if (uart_rx_any(self)) {
return mp_const_true;
} else {
return mp_const_false;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any);
/// \method writechar(char)
/// Write a single character on the bus. `char` is an integer to write.
/// Return value: `None`.
STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
pyb_uart_obj_t *self = self_in;
// get the character to write
uint8_t data = mp_obj_get_int(char_in);
// send the character
if (!uart_tx_char(self, data)) {
nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(ETIMEDOUT)));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar);
/// \method readchar()
/// Receive a single character on the bus.
/// Return value: The character read, as an integer. Returns -1 on timeout.
STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
if (uart_rx_wait(self, self->timeout)) {
return mp_obj_new_int(uart_rx_char(self));
} else {
// return -1 on timeout
return MP_OBJ_NEW_SMALL_INT(-1);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar);
STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR___del__), (mp_obj_t)&pyb_uart_delete_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_uart_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_uart_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_uart_any_obj },
/// \method read([nbytes])
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj },
/// \method readall()
{ MP_OBJ_NEW_QSTR(MP_QSTR_readall), (mp_obj_t)&mp_stream_readall_obj },
/// \method readline()
{ MP_OBJ_NEW_QSTR(MP_QSTR_readline), (mp_obj_t)&mp_stream_unbuffered_readline_obj},
/// \method readinto(buf[, nbytes])
{ MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&mp_stream_readinto_obj },
/// \method write(buf)
{ MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&mp_stream_write_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_writechar), (mp_obj_t)&pyb_uart_writechar_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_readchar), (mp_obj_t)&pyb_uart_readchar_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_FLOW_NONE), MP_OBJ_NEW_SMALL_INT(UART_FLOWCONTROL_NONE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_FLOW_TX), MP_OBJ_NEW_SMALL_INT(UART_FLOWCONTROL_TX) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_FLOW_RX), MP_OBJ_NEW_SMALL_INT(UART_FLOWCONTROL_RX) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_FLOW_TXRX), MP_OBJ_NEW_SMALL_INT(UART_FLOWCONTROL_TX | UART_FLOWCONTROL_RX) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table);
STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
pyb_uart_obj_t *self = self_in;
byte *buf = buf_in;
// make sure we want at least 1 char
if (size == 0) {
return 0;
}
// wait for first char to become available
if (!uart_rx_wait(self, self->timeout)) {
// we can either return 0 to indicate EOF (then read() method returns b'')
// or return EAGAIN error to indicate non-blocking (then read() method returns None)
return 0;
}
// read the data
byte *orig_buf = buf;
for (;;) {
*buf++ = uart_rx_char(self);
if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) {
// return number of bytes read
return buf - orig_buf;
}
}
}
STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
pyb_uart_obj_t *self = self_in;
const char *buf = buf_in;
// write the data
if (!uart_tx_strn(self, buf, size)) {
nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(ETIMEDOUT)));
}
return size;
}
STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
pyb_uart_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_IOCTL_POLL) {
mp_uint_t flags = arg;
ret = 0;
if ((flags & MP_IOCTL_POLL_RD) && uart_rx_any(self)) {
ret |= MP_IOCTL_POLL_RD;
}
if ((flags & MP_IOCTL_POLL_WR) && MAP_UARTSpaceAvail(self->reg)) {
ret |= MP_IOCTL_POLL_WR;
}
} else {
*errcode = EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t uart_stream_p = {
.read = pyb_uart_read,
.write = pyb_uart_write,
.ioctl = pyb_uart_ioctl,
.is_text = false,
};
const mp_obj_type_t pyb_uart_type = {
{ &mp_type_type },
.name = MP_QSTR_UART,
.print = pyb_uart_print,
.make_new = pyb_uart_make_new,
.getiter = mp_identity,
.iternext = mp_stream_unbuffered_iter,
.stream_p = &uart_stream_p,
.locals_dict = (mp_obj_t)&pyb_uart_locals_dict,
};