circuitpython/py/objcomplex.c
Damien George 20006dbba9 Make VM stack grow upwards, and so no reversed args arrays.
Change state layout in VM so the stack starts at state[0] and grows
upwards.  Locals are at the top end of the state and number downwards.
This cleans up a lot of the interface connecting the VM to C: now all
functions that take an array of Micro Python objects are in order (ie no
longer in reverse).

Also clean up C API with keyword arguments (call_n and call_n_kw
replaced with single call method that takes keyword arguments).  And now
make_new takes keyword arguments.

emitnative.c has not yet been changed to comply with the new order of
stack layout.
2014-01-18 14:10:48 +00:00

148 lines
4.5 KiB
C

#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "mpqstr.h"
#include "obj.h"
#include "runtime0.h"
#include "map.h"
#if MICROPY_ENABLE_FLOAT
typedef struct _mp_obj_complex_t {
mp_obj_base_t base;
mp_float_t real;
mp_float_t imag;
} mp_obj_complex_t;
mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag);
void complex_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o_in, mp_print_kind_t kind) {
mp_obj_complex_t *o = o_in;
if (o->real == 0) {
print(env, "%.8gj", o->imag);
} else {
print(env, "(%.8g+%.8gj)", o->real, o->imag);
}
}
static mp_obj_t complex_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// TODO check n_kw == 0
switch (n_args) {
case 0:
return mp_obj_new_complex(0, 0);
case 1:
// TODO allow string as first arg and parse it
if (MP_OBJ_IS_TYPE(args[0], &complex_type)) {
return args[0];
} else {
return mp_obj_new_complex(mp_obj_get_float(args[0]), 0);
}
case 2:
{
mp_float_t real, imag;
if (MP_OBJ_IS_TYPE(args[0], &complex_type)) {
mp_obj_complex_get(args[0], &real, &imag);
} else {
real = mp_obj_get_float(args[0]);
imag = 0;
}
if (MP_OBJ_IS_TYPE(args[1], &complex_type)) {
mp_float_t real2, imag2;
mp_obj_complex_get(args[1], &real2, &imag2);
real -= imag2;
imag += real2;
} else {
imag += mp_obj_get_float(args[1]);
}
return mp_obj_new_complex(real, imag);
}
default:
nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_TypeError, "complex takes at most 2 arguments, %d given", (void*)(machine_int_t)n_args));
}
}
static mp_obj_t complex_unary_op(int op, mp_obj_t o_in) {
mp_obj_complex_t *o = o_in;
switch (op) {
case RT_UNARY_OP_NOT: if (o->real != 0 || o->imag != 0) { return mp_const_true;} else { return mp_const_false; }
case RT_UNARY_OP_POSITIVE: return o_in;
case RT_UNARY_OP_NEGATIVE: return mp_obj_new_complex(-o->real, -o->imag);
default: return MP_OBJ_NULL; // op not supported
}
}
static mp_obj_t complex_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
mp_obj_complex_t *lhs = lhs_in;
return mp_obj_complex_binary_op(op, lhs->real, lhs->imag, rhs_in);
}
const mp_obj_type_t complex_type = {
{ &mp_const_type },
"complex",
.print = complex_print,
.make_new = complex_make_new,
.unary_op = complex_unary_op,
.binary_op = complex_binary_op,
};
mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag) {
mp_obj_complex_t *o = m_new_obj(mp_obj_complex_t);
o->base.type = &complex_type;
o->real = real;
o->imag = imag;
return o;
}
void mp_obj_complex_get(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag) {
assert(MP_OBJ_IS_TYPE(self_in, &complex_type));
mp_obj_complex_t *self = self_in;
*real = self->real;
*imag = self->imag;
}
mp_obj_t mp_obj_complex_binary_op(int op, mp_float_t lhs_real, mp_float_t lhs_imag, mp_obj_t rhs_in) {
mp_float_t rhs_real, rhs_imag;
mp_obj_get_complex(rhs_in, &rhs_real, &rhs_imag); // can be any type, this function will convert to float (if possible)
switch (op) {
case RT_BINARY_OP_ADD:
case RT_BINARY_OP_INPLACE_ADD:
lhs_real += rhs_real;
lhs_imag += rhs_imag;
break;
case RT_BINARY_OP_SUBTRACT:
case RT_BINARY_OP_INPLACE_SUBTRACT:
lhs_real -= rhs_real;
lhs_imag -= rhs_imag;
break;
case RT_BINARY_OP_MULTIPLY:
case RT_BINARY_OP_INPLACE_MULTIPLY:
{
mp_float_t real = lhs_real * rhs_real - lhs_imag * rhs_imag;
lhs_imag = lhs_real * rhs_imag + lhs_imag * rhs_real;
lhs_real = real;
break;
}
/* TODO floor(?) the value
case RT_BINARY_OP_FLOOR_DIVIDE:
case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: val = lhs_val / rhs_val; break;
*/
/* TODO
case RT_BINARY_OP_TRUE_DIVIDE:
case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: val = lhs_val / rhs_val; break;
*/
return NULL; // op not supported
}
return mp_obj_new_complex(lhs_real, lhs_imag);
}
#endif