Scott Shawcroft dc76306cfa
Enable a BLE workflow
nRF CircuitPython boards will now provide the file transfer
service defined here: https://github.com/adafruit/Adafruit_CircuitPython_BLE_File_Transfer

USB capable boards will only advertise if previously bonded to a
device or if the reset button is pressed during the fast blue
flashes on start up. When pressed, the board will restart again but
the blue period will not flash.

Boards without USB will always advertise.

When previously bonded, the advertisement is private so that no
other peers can connect. If advertising publicly, the tx power is
lowered to reduce the likelihood of bonding from a distance.

This PR also fixes issues with loading identities of bonded peers
so that our address can now be resolved and we can resolve others'
addresses when scanning.
2021-06-24 12:59:14 -07:00

287 lines
9.0 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 hathach for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "tusb.h"
// // #include "supervisor/flash.h"
// For updating fatfs's cache
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "lib/oofatfs/diskio.h"
#include "lib/oofatfs/ff.h"
#include "py/mpstate.h"
#include "shared-module/storage/__init__.h"
#include "supervisor/filesystem.h"
#include "supervisor/shared/autoreload.h"
#define MSC_FLASH_BLOCK_SIZE 512
static bool ejected[1] = {true};
// Lock to track if something else is using the filesystem when USB is plugged in. If so, the drive
// will be made available once the lock is released.
static bool _usb_msc_lock = false;
static bool _usb_connected_while_locked = false;
STATIC void _usb_msc_uneject(void) {
for (uint8_t i = 0; i < sizeof(ejected); i++) {
ejected[i] = false;
}
}
void usb_msc_mount(void) {
// Reset the ejection tracking every time we're plugged into USB. This allows for us to battery
// power the device, eject, unplug and plug it back in to get the drive.
if (_usb_msc_lock) {
_usb_connected_while_locked = true;
return;
}
_usb_msc_uneject();
_usb_connected_while_locked = false;
}
void usb_msc_umount(void) {
}
bool usb_msc_ejected(void) {
bool all_ejected = true;
for (uint8_t i = 0; i < sizeof(ejected); i++) {
all_ejected &= ejected[i];
}
return all_ejected;
}
bool usb_msc_lock(void) {
if ((storage_usb_enabled() && !usb_msc_ejected()) || _usb_msc_lock) {
return false;
}
_usb_msc_lock = true;
return true;
}
void usb_msc_unlock(void) {
if (!_usb_msc_lock) {
// Mismatched unlock.
return;
}
if (_usb_connected_while_locked) {
_usb_msc_uneject();
}
_usb_msc_lock = false;
}
// The root FS is always at the end of the list.
static fs_user_mount_t *get_vfs(int lun) {
// TODO(tannewt): Return the mount which matches the lun where 0 is the end
// and is counted in reverse.
if (lun > 0) {
return NULL;
}
mp_vfs_mount_t *current_mount = MP_STATE_VM(vfs_mount_table);
if (current_mount == NULL) {
return NULL;
}
while (current_mount->next != NULL) {
current_mount = current_mount->next;
}
return current_mount->obj;
}
// Callback invoked when received an SCSI command not in built-in list below
// - READ_CAPACITY10, READ_FORMAT_CAPACITY, INQUIRY, TEST_UNIT_READY, START_STOP_UNIT, MODE_SENSE6, REQUEST_SENSE
// - READ10 and WRITE10 have their own callbacks
int32_t tud_msc_scsi_cb(uint8_t lun, const uint8_t scsi_cmd[16], void *buffer, uint16_t bufsize) {
const void *response = NULL;
int32_t resplen = 0;
switch (scsi_cmd[0]) {
case SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL:
// Host is about to read/write etc ... better not to disconnect disk
resplen = 0;
break;
default:
// Set Sense = Invalid Command Operation
tud_msc_set_sense(lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00);
// negative means error -> tinyusb could stall and/or response with failed status
resplen = -1;
break;
}
// return len must not larger than bufsize
if (resplen > bufsize) {
resplen = bufsize;
}
// copy response to stack's buffer if any
if (response && (resplen > 0)) {
memcpy(buffer, response, resplen);
}
return resplen;
}
void tud_msc_capacity_cb(uint8_t lun, uint32_t *block_count, uint16_t *block_size) {
fs_user_mount_t *vfs = get_vfs(lun);
disk_ioctl(vfs, GET_SECTOR_COUNT, block_count);
disk_ioctl(vfs, GET_SECTOR_SIZE, block_size);
}
bool tud_msc_is_writable_cb(uint8_t lun) {
if (lun > 1) {
return false;
}
fs_user_mount_t *vfs = get_vfs(lun);
if (vfs == NULL) {
return false;
}
if (vfs->blockdev.writeblocks[0] == MP_OBJ_NULL || !filesystem_is_writable_by_usb(vfs)) {
return false;
}
return true;
}
// Callback invoked when received READ10 command.
// Copy disk's data to buffer (up to bufsize) and return number of copied bytes.
int32_t tud_msc_read10_cb(uint8_t lun, uint32_t lba, uint32_t offset, void *buffer, uint32_t bufsize) {
(void)lun;
(void)offset;
const uint32_t block_count = bufsize / MSC_FLASH_BLOCK_SIZE;
fs_user_mount_t *vfs = get_vfs(lun);
disk_read(vfs, buffer, lba, block_count);
return block_count * MSC_FLASH_BLOCK_SIZE;
}
// Callback invoked when received WRITE10 command.
// Process data in buffer to disk's storage and return number of written bytes
int32_t tud_msc_write10_cb(uint8_t lun, uint32_t lba, uint32_t offset, uint8_t *buffer, uint32_t bufsize) {
(void)lun;
(void)offset;
const uint32_t block_count = bufsize / MSC_FLASH_BLOCK_SIZE;
fs_user_mount_t *vfs = get_vfs(lun);
disk_write(vfs, buffer, lba, block_count);
// Since by getting here we assume the mount is read-only to
// MicroPython let's update the cached FatFs sector if it's the one
// we just wrote.
#if FF_MAX_SS != FF_MIN_SS
if (vfs->ssize == MSC_FLASH_BLOCK_SIZE) {
#else
// The compiler can optimize this away.
if (FF_MAX_SS == FILESYSTEM_BLOCK_SIZE) {
#endif
if (lba == vfs->fatfs.winsect && lba > 0) {
memcpy(vfs->fatfs.win,
buffer + MSC_FLASH_BLOCK_SIZE * (vfs->fatfs.winsect - lba),
MSC_FLASH_BLOCK_SIZE);
}
}
return block_count * MSC_FLASH_BLOCK_SIZE;
}
// Callback invoked when WRITE10 command is completed (status received and accepted by host).
// used to flush any pending cache.
void tud_msc_write10_complete_cb(uint8_t lun) {
(void)lun;
// This write is complete, start the autoreload clock.
autoreload_start();
}
// Invoked when received SCSI_CMD_INQUIRY
// Application fill vendor id, product id and revision with string up to 8, 16, 4 characters respectively
void tud_msc_inquiry_cb(uint8_t lun, uint8_t vendor_id[8], uint8_t product_id[16], uint8_t product_rev[4]) {
(void)lun;
memcpy(vendor_id, CFG_TUD_MSC_VENDOR, strlen(CFG_TUD_MSC_VENDOR));
memcpy(product_id, CFG_TUD_MSC_PRODUCT, strlen(CFG_TUD_MSC_PRODUCT));
memcpy(product_rev, CFG_TUD_MSC_PRODUCT_REV, strlen(CFG_TUD_MSC_PRODUCT_REV));
}
// Invoked when received Test Unit Ready command.
// return true allowing host to read/write this LUN e.g SD card inserted
bool tud_msc_test_unit_ready_cb(uint8_t lun) {
if (lun > 1) {
return false;
}
fs_user_mount_t *current_mount = get_vfs(lun);
if (current_mount == NULL) {
return false;
}
if (ejected[lun]) {
// Set 0x3a for media not present.
tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x3A, 0x00);
return false;
}
return true;
}
// Invoked when received Start Stop Unit command
// - Start = 0 : stopped power mode, if load_eject = 1 : unload disk storage
// - Start = 1 : active mode, if load_eject = 1 : load disk storage
bool tud_msc_start_stop_cb(uint8_t lun, uint8_t power_condition, bool start, bool load_eject) {
if (lun > 1) {
return false;
}
fs_user_mount_t *current_mount = get_vfs(lun);
if (current_mount == NULL) {
return false;
}
if (load_eject) {
if (!start) {
// Eject but first flush.
if (disk_ioctl(current_mount, CTRL_SYNC, NULL) != RES_OK) {
return false;
} else {
ejected[lun] = true;
}
} else {
// We can only load if it hasn't been ejected.
return !ejected[lun];
}
} else {
if (!start) {
// Stop the unit but don't eject.
if (disk_ioctl(current_mount, CTRL_SYNC, NULL) != RES_OK) {
return false;
}
}
// Always start the unit, even if ejected. Whether media is present is a separate check.
}
return true;
}