Damien George 6d983539bc stmhal: Improve flash storage cache management.
Internal flash used for the filesystem is now written (from the cache)
only after a 5s delay, or when a file is closed, or when the drive is
unmounted from the host.  This delay means that multiple writes can
accumulate in the cache, and leads to less writes to the flash, making
it last longer.

It's implemented by a high-priority interrupt that takes care of flash
erase and write, and flushing the cache.

This is still only an interim solution for the flash filesystem.  It
eventually needs to be replaced with something that uses less RAM for
the cache, something that can use more of the flash, and something that
does proper wear levelling.
2014-04-16 23:08:36 +01:00

228 lines
7.0 KiB
C

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stm32f4xx_hal.h>
#include "usbd_cdc_msc_hid.h"
#include "usbd_cdc_interface.h"
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
#include "timer.h"
#include "servo.h"
// The timers can be used by multiple drivers, and need a common point for
// the interrupts to be dispatched, so they are all collected here.
//
// TIM3:
// - flash storage controller, to flush the cache
// - USB CDC interface, interval, to check for new data
// - LED 4, PWM to set the LED intensity
//
// TIM5:
// - servo controller, PWM
TIM_HandleTypeDef TIM3_Handle;
TIM_HandleTypeDef TIM5_Handle;
TIM_HandleTypeDef TIM6_Handle;
// Used to divide down TIM3 and periodically call the flash storage IRQ
static uint32_t tim3_counter = 0;
// TIM3 is set-up for the USB CDC interface
void timer_tim3_init(void) {
// set up the timer for USBD CDC
__TIM3_CLK_ENABLE();
TIM3_Handle.Instance = TIM3;
TIM3_Handle.Init.Period = (USBD_CDC_POLLING_INTERVAL*1000) - 1; // TIM3 fires every USBD_CDC_POLLING_INTERVAL ms
TIM3_Handle.Init.Prescaler = 84-1; // for System clock at 168MHz, TIM3 runs at 1MHz
TIM3_Handle.Init.ClockDivision = 0;
TIM3_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
HAL_TIM_Base_Init(&TIM3_Handle);
HAL_NVIC_SetPriority(TIM3_IRQn, 6, 0);
HAL_NVIC_EnableIRQ(TIM3_IRQn);
if (HAL_TIM_Base_Start(&TIM3_Handle) != HAL_OK) {
/* Starting Error */
}
}
/* unused
void timer_tim3_deinit(void) {
// reset TIM3 timer
__TIM3_FORCE_RESET();
__TIM3_RELEASE_RESET();
}
*/
// TIM5 is set-up for the servo controller
// This function inits but does not start the timer
void timer_tim5_init(void) {
// TIM5 clock enable
__TIM5_CLK_ENABLE();
// set up and enable interrupt
HAL_NVIC_SetPriority(TIM5_IRQn, 6, 0);
HAL_NVIC_EnableIRQ(TIM5_IRQn);
// PWM clock configuration
TIM5_Handle.Instance = TIM5;
TIM5_Handle.Init.Period = 2000; // timer cycles at 50Hz
TIM5_Handle.Init.Prescaler = ((SystemCoreClock / 2) / 100000) - 1; // timer runs at 100kHz
TIM5_Handle.Init.ClockDivision = 0;
TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
HAL_TIM_PWM_Init(&TIM5_Handle);
}
// Init TIM6 with a counter-overflow at the given frequency (given in Hz)
// TIM6 is used by the DAC and ADC for auto sampling at a given frequency
// This function inits but does not start the timer
void timer_tim6_init(uint freq) {
// TIM6 clock enable
__TIM6_CLK_ENABLE();
// Timer runs at SystemCoreClock / 2
// Compute the prescaler value so TIM6 triggers at freq-Hz
uint32_t period = (SystemCoreClock / 2) / freq;
uint32_t prescaler = 1;
while (period > 0xffff) {
period >>= 1;
prescaler <<= 1;
}
// Time base clock configuration
TIM6_Handle.Instance = TIM6;
TIM6_Handle.Init.Period = period - 1;
TIM6_Handle.Init.Prescaler = prescaler - 1;
TIM6_Handle.Init.ClockDivision = 0; // unused for TIM6
TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
HAL_TIM_Base_Init(&TIM6_Handle);
}
// Interrupt dispatch
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
if (htim == &TIM3_Handle) {
USBD_CDC_HAL_TIM_PeriodElapsedCallback();
// Periodically raise a flash IRQ for the flash storage controller
if (tim3_counter++ >= 500 / USBD_CDC_POLLING_INTERVAL) {
tim3_counter = 0;
NVIC->STIR = FLASH_IRQn;
}
} else if (htim == &TIM5_Handle) {
servo_timer_irq_callback();
}
}
// below is old code from stm/ which has not yet been fully ported to stmhal/
#if 0
typedef struct _pyb_hal_tim_t {
mp_obj_base_t base;
TIM_HandleTypeDef htim;
} pyb_hal_tim_t;
pyb_hal_tim_t pyb_hal_tim_6;
pyb_hal_tim_6 = {
.base = {&pyb_type_hal_tim};
.htim = {TIM6
// TIM6 is used as an internal interrup to schedule something at a specific rate
mp_obj_t timer_py_callback;
mp_obj_t timer_py_set_callback(mp_obj_t f) {
timer_py_callback = f;
return mp_const_none;
}
mp_obj_t timer_py_set_period(mp_obj_t period) {
TIM6->ARR = mp_obj_get_int(period) & 0xffff;
return mp_const_none;
}
mp_obj_t timer_py_set_prescaler(mp_obj_t prescaler) {
TIM6->PSC = mp_obj_get_int(prescaler) & 0xffff;
return mp_const_none;
}
mp_obj_t timer_py_get_value(void) {
return mp_obj_new_int(TIM6->CNT & 0xfffff);
}
void timer_init(void) {
timer_py_callback = mp_const_none;
// TIM6 clock enable
__TIM6_CLK_ENABLE();
// Compute the prescaler value so TIM6 runs at 20kHz
uint16_t PrescalerValue = (uint16_t) ((SystemCoreClock / 2) / 20000) - 1;
// Time base configuration
tim_handle.Instance = TIM6;
tim_handle.Init.Prescaler = PrescalerValue;
tim_handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
tim_handle.Init.Period = 20000; // timer cycles at 1Hz
tim_handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
tim_handle.Init.RepetitionCounter = 0; // unused for TIM6
HAL_TIM_Base_Init(&tim_handle);
// enable perhipheral preload register
//TIM_ARRPreloadConfig(TIM6, ENABLE); ??
// set up interrupt
HAL_NVIC_SetPriority(TIM6_DAC_IRQn, 0xf, 0xf); // lowest priority
HAL_NVIC_EnableIRQ(TIM6_DAC_IRQn);
// start timer, so that it interrupts on overflow
HAL_TIM_Base_Start_IT(&tim_handle);
// Python interface
mp_obj_t m = mp_obj_new_module(QSTR_FROM_STR_STATIC("timer"));
rt_store_attr(m, QSTR_FROM_STR_STATIC("callback"), rt_make_function_n(1, timer_py_set_callback));
rt_store_attr(m, QSTR_FROM_STR_STATIC("period"), rt_make_function_n(1, timer_py_set_period));
rt_store_attr(m, QSTR_FROM_STR_STATIC("prescaler"), rt_make_function_n(1, timer_py_set_prescaler));
rt_store_attr(m, QSTR_FROM_STR_STATIC("value"), rt_make_function_n(0, timer_py_get_value));
rt_store_name(QSTR_FROM_STR_STATIC("timer"), m);
}
void timer_interrupt(void) {
if (timer_py_callback != mp_const_none) {
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
// XXX what to do if the GC is in the middle of running??
rt_call_function_0(timer_py_callback);
nlr_pop();
} else {
// uncaught exception
printf("exception in timer interrupt\n");
mp_obj_print((mp_obj_t)nlr.ret_val, PRINT_REPR);
printf("\n");
}
}
}
mp_obj_t pyb_Timer(mp_obj_t timx_in) {
TIM_TypeDef *TIMx = (TIM_TypeDef*)mp_obj_get_int(timx_in);
if (!IS_TIM_INSTANCE(TIMx)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "argument 1 is not a TIM instance"));
}
pyb_hal_tim_t *tim = m_new_obj(pyb_hal_tim_t);
tim->htim.Instance = TIMx;
tim->htim.Instance.Init.Prescaler = x;
tim->htim.Instance.Init.CounterMode = y;
tim->htim.Instance.Init.Period = y;
tim->htim.Instance.Init.ClockDivision = y;
tim->htim.Instance.Init.RepetitionCounter = y;
HAL_TIM_Base_Init(&tim->htim);
return tim;
}
#endif