Scott Shawcroft 269d51d023
Add two stage reset for BLE
This lets the BLE stack run through the wait period after a VM run
when it may be waiting for more writes due to an auto-reload.

User BLE functionality will have their events stopped. Scanning and
advertising is also stopped.
2022-05-12 13:20:44 -07:00

413 lines
12 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
* Copyright (c) 2021 Junji Sakai
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "supervisor/port.h"
#include <stdint.h>
#include "supervisor/background_callback.h"
#include "supervisor/board.h"
#include "nrfx/hal/nrf_clock.h"
#include "nrfx/hal/nrf_power.h"
#include "nrfx/drivers/include/nrfx_gpiote.h"
#include "nrfx/drivers/include/nrfx_power.h"
#include "nrfx/drivers/include/nrfx_rtc.h"
#include "nrf/cache.h"
#include "nrf/clocks.h"
#include "nrf/power.h"
#include "nrf/timers.h"
#include "nrf_nvic.h"
#include "common-hal/microcontroller/Pin.h"
#include "common-hal/alarm/time/TimeAlarm.h"
#include "common-hal/analogio/AnalogIn.h"
#include "common-hal/busio/I2C.h"
#include "common-hal/busio/SPI.h"
#include "common-hal/busio/UART.h"
#include "common-hal/pulseio/PulseOut.h"
#include "common-hal/pulseio/PulseIn.h"
#include "common-hal/pwmio/PWMOut.h"
#include "common-hal/rtc/RTC.h"
#include "common-hal/neopixel_write/__init__.h"
#include "common-hal/watchdog/WatchDogTimer.h"
#include "common-hal/alarm/__init__.h"
#include "shared-bindings/_bleio/__init__.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/rtc/__init__.h"
#include "lib/tinyusb/src/device/usbd.h"
#ifdef CIRCUITPY_AUDIOBUSIO
#include "common-hal/audiobusio/I2SOut.h"
#endif
#ifdef CIRCUITPY_AUDIOPWMIO
#include "common-hal/audiopwmio/PWMAudioOut.h"
#endif
#if defined(MICROPY_QSPI_CS)
extern void qspi_disable(void);
#endif
static void power_warning_handler(void) {
reset_into_safe_mode(BROWNOUT);
}
uint32_t reset_reason_saved = 0;
const nrfx_rtc_t rtc_instance = NRFX_RTC_INSTANCE(2);
nrfx_rtc_config_t rtc_config = {
.prescaler = RTC_FREQ_TO_PRESCALER(0x8000),
.reliable = 0,
.tick_latency = 0,
.interrupt_priority = 6
};
#define OVERFLOW_CHECK_PREFIX 0x2cad564f
#define OVERFLOW_CHECK_SUFFIX 0x11343ef7
static volatile struct {
uint32_t prefix;
uint64_t overflowed_ticks;
uint32_t suffix;
} overflow_tracker __attribute__((section(".uninitialized")));
STATIC void rtc_handler(nrfx_rtc_int_type_t int_type) {
if (int_type == NRFX_RTC_INT_OVERFLOW) {
// Our RTC is 24 bits and we're clocking it at 32.768khz which is 32 (2 ** 5) subticks per
// tick.
overflow_tracker.overflowed_ticks += (1L << (24 - 5));
} else if (int_type == NRFX_RTC_INT_TICK && nrfx_rtc_counter_get(&rtc_instance) % 32 == 0) {
// Do things common to all ports when the tick occurs
supervisor_tick();
} else if (int_type == NRFX_RTC_INT_COMPARE0) {
nrfx_rtc_cc_set(&rtc_instance, 0, 0, false);
} else if (int_type == NRFX_RTC_INT_COMPARE1) {
// used in light sleep
#if CIRCUITPY_ALARM
sleepmem_wakeup_event = SLEEPMEM_WAKEUP_BY_TIMER;
#endif
nrfx_rtc_cc_set(&rtc_instance, 1, 0, false);
}
}
STATIC void tick_init(void) {
if (!nrf_clock_lf_is_running(NRF_CLOCK)) {
nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_LFCLKSTART);
}
nrfx_rtc_counter_clear(&rtc_instance);
nrfx_rtc_init(&rtc_instance, &rtc_config, rtc_handler);
nrfx_rtc_enable(&rtc_instance);
nrfx_rtc_overflow_enable(&rtc_instance, true);
// If the check prefix and suffix aren't correct, then the structure
// in memory isn't correct and the clock will be wildly wrong. Initialize
// the prefix and suffix so that we know the value is correct, and reset
// the time to 0.
if (overflow_tracker.prefix != OVERFLOW_CHECK_PREFIX ||
overflow_tracker.suffix != OVERFLOW_CHECK_SUFFIX) {
overflow_tracker.prefix = OVERFLOW_CHECK_PREFIX;
overflow_tracker.suffix = OVERFLOW_CHECK_SUFFIX;
overflow_tracker.overflowed_ticks = 0;
}
}
STATIC void tick_uninit(void) {
nrfx_rtc_counter_clear(&rtc_instance);
nrfx_rtc_disable(&rtc_instance);
nrfx_rtc_uninit(&rtc_instance);
}
void tick_set_prescaler(uint32_t prescaler_val) {
tick_uninit();
// update of prescaler value sometimes fails if we skip this delay..
NRFX_DELAY_US(1000);
uint16_t prescaler_saved = rtc_config.prescaler;
rtc_config.prescaler = prescaler_val;
tick_init();
rtc_config.prescaler = prescaler_saved;
}
safe_mode_t port_init(void) {
nrf_peripherals_clocks_init();
// If GPIO voltage is set wrong in UICR, this will fix it, and
// will also do a reset to make the change take effect.
nrf_peripherals_power_init();
nrfx_power_pofwarn_config_t power_failure_config;
power_failure_config.handler = power_warning_handler;
power_failure_config.thr = NRF_POWER_POFTHR_V27;
#if NRF_POWER_HAS_VDDH
power_failure_config.thrvddh = NRF_POWER_POFTHRVDDH_V27;
#endif
nrfx_power_pof_init(&power_failure_config);
nrfx_power_pof_enable(&power_failure_config);
nrf_peripherals_enable_cache();
// Configure millisecond timer initialization.
tick_init();
#if CIRCUITPY_RTC
common_hal_rtc_init();
#endif
#if CIRCUITPY_ANALOGIO
analogin_init();
#endif
reset_reason_saved = NRF_POWER->RESETREAS;
// clear all RESET reason bits
NRF_POWER->RESETREAS = reset_reason_saved;
// clear wakeup event/pin when reset by reset-pin
if (reset_reason_saved & NRF_POWER_RESETREAS_RESETPIN_MASK) {
#if CIRCUITPY_ALARM
sleepmem_wakeup_event = SLEEPMEM_WAKEUP_BY_NONE;
#endif
}
// If the board was reset by the WatchDogTimer, we may
// need to boot into safe mode. Reset the RESETREAS bit
// for the WatchDogTimer so we don't encounter this the
// next time we reboot.
if (reset_reason_saved & POWER_RESETREAS_DOG_Msk) {
NRF_POWER->RESETREAS = POWER_RESETREAS_DOG_Msk;
uint32_t usb_reg = NRF_POWER->USBREGSTATUS;
// If USB is connected, then the user might be editing `code.py`,
// in which case we should reboot into Safe Mode.
if (usb_reg & POWER_USBREGSTATUS_VBUSDETECT_Msk) {
return WATCHDOG_RESET;
}
}
return NO_SAFE_MODE;
}
void reset_port(void) {
#if CIRCUITPY_BUSIO
i2c_reset();
spi_reset();
uart_reset();
#endif
#if CIRCUITPY_NEOPIXEL_WRITE
neopixel_write_reset();
#endif
#if CIRCUITPY_AUDIOBUSIO
i2s_reset();
#endif
#if CIRCUITPY_AUDIOPWMIO
audiopwmout_reset();
#endif
#if CIRCUITPY_PULSEIO
pulseout_reset();
pulsein_reset();
#endif
#if CIRCUITPY_PWMIO
pwmout_reset();
#endif
#if CIRCUITPY_RTC
rtc_reset();
#endif
timers_reset();
#if CIRCUITPY_WATCHDOG
watchdog_reset();
#endif
// Always reset GPIOTE because it is shared.
if (nrfx_gpiote_is_init()) {
nrfx_gpiote_uninit();
}
nrfx_gpiote_init(NRFX_GPIOTE_CONFIG_IRQ_PRIORITY);
reset_all_pins();
}
void reset_to_bootloader(void) {
enum { DFU_MAGIC_SERIAL = 0x4e };
NRF_POWER->GPREGRET = DFU_MAGIC_SERIAL;
reset_cpu();
}
void reset_cpu(void) {
// We're getting ready to reset, so save the counter off.
// This counter will get reset to zero during the reboot.
uint32_t ticks = nrfx_rtc_counter_get(&rtc_instance);
overflow_tracker.overflowed_ticks += ticks / 32;
NVIC_SystemReset();
for (;;) {
}
}
// The uninitialized data section is placed directly after BSS, under the theory
// that CircuitPython has a lot more .data and .bss than the bootloader. As a
// result, this section is less likely to be tampered with by the bootloader.
extern uint32_t _euninitialized;
uint32_t *port_heap_get_bottom(void) {
return &_euninitialized;
}
uint32_t *port_heap_get_top(void) {
return port_stack_get_top();
}
bool port_has_fixed_stack(void) {
return false;
}
uint32_t *port_stack_get_limit(void) {
return &_euninitialized;
}
uint32_t *port_stack_get_top(void) {
return &_estack;
}
// Place the word in the uninitialized section so it won't get overwritten.
__attribute__((section(".uninitialized"))) uint32_t _saved_word;
void port_set_saved_word(uint32_t value) {
_saved_word = value;
}
uint32_t port_get_saved_word(void) {
return _saved_word;
}
uint64_t port_get_raw_ticks(uint8_t *subticks) {
common_hal_mcu_disable_interrupts();
uint32_t rtc = nrfx_rtc_counter_get(&rtc_instance);
uint64_t overflow_count = overflow_tracker.overflowed_ticks;
common_hal_mcu_enable_interrupts();
if (subticks != NULL) {
*subticks = (rtc % 32);
}
return overflow_count + rtc / 32;
}
// Enable 1/1024 second tick.
void port_enable_tick(void) {
nrfx_rtc_tick_enable(&rtc_instance, true);
}
// Disable 1/1024 second tick.
void port_disable_tick(void) {
nrfx_rtc_tick_disable(&rtc_instance);
}
void port_interrupt_after_ticks_ch(uint32_t channel, uint32_t ticks) {
uint32_t current_ticks = nrfx_rtc_counter_get(&rtc_instance);
uint32_t diff = 3;
if (ticks > diff) {
diff = ticks * 32;
}
if (diff > 0xffffff) {
diff = 0xffffff;
}
nrfx_rtc_cc_set(&rtc_instance, channel, current_ticks + diff, true);
}
void port_disable_interrupt_after_ticks_ch(uint32_t channel) {
nrfx_rtc_cc_disable(&rtc_instance, channel);
}
void port_interrupt_after_ticks(uint32_t ticks) {
port_interrupt_after_ticks_ch(0, ticks);
}
void port_idle_until_interrupt(void) {
#if defined(MICROPY_QSPI_CS)
qspi_disable();
#endif
// Clear the FPU interrupt because it can prevent us from sleeping.
if (NVIC_GetPendingIRQ(FPU_IRQn)) {
__set_FPSCR(__get_FPSCR() & ~(0x9f));
(void)__get_FPSCR();
NVIC_ClearPendingIRQ(FPU_IRQn);
}
uint8_t sd_enabled;
sd_softdevice_is_enabled(&sd_enabled);
if (sd_enabled) {
if (!background_callback_pending()) {
sd_app_evt_wait();
}
} else {
// Call wait for interrupt ourselves if the SD isn't enabled.
// Note that `wfi` should be called with interrupts disabled,
// to ensure that the queue is properly drained. The `wfi`
// instruction will returned as long as an interrupt is
// available, even though the actual handler won't fire until
// we re-enable interrupts.
//
// We do not use common_hal_mcu_disable_interrupts here because
// we truly require that interrupts be disabled, while
// common_hal_mcu_disable_interrupts actually just masks the
// interrupts that are not required to allow the softdevice to
// function (whether or not SD is enabled)
int nested = __get_PRIMASK();
__disable_irq();
if (!background_callback_pending()) {
__DSB();
__WFI();
}
if (!nested) {
__enable_irq();
}
}
}
extern void HardFault_Handler(void);
void HardFault_Handler(void) {
reset_into_safe_mode(HARD_CRASH);
while (true) {
asm ("nop;");
}
}
#if CIRCUITPY_ALARM
// in case boards/xxx/board.c does not provide board_deinit()
MP_WEAK void board_deinit(void) {
}
#endif