circuitpython/shared-bindings/wifi/Radio.c

786 lines
33 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/wifi/__init__.h"
#include "shared-bindings/wifi/AuthMode.h"
#include <string.h>
#include "py/unicode.h"
#include "py/runtime.h"
#include "py/objproperty.h"
#define MAC_ADDRESS_LENGTH 6
STATIC bool hostname_valid(const char *ptr, size_t len) {
#if 0 // validated by mp_arg_validate_length_range
if (len == 0 || len > 253) {
// at most 253 characters long
return false;
}
#endif
int partlen = 0;
while (len) {
char c = *ptr++;
len--;
if (c == '.') {
if (partlen == 0 || partlen > 63) {
return false;
}
partlen = 0;
continue;
}
partlen++;
if (c == '-') {
if (partlen == 1) {
return false; // part cannot begin with a dash
}
continue;
} else if (
(c >= 'a' && c <= 'z') ||
(c >= 'A' && c <= 'Z') ||
(c >= '0' && c <= '9')) {
continue;
}
return false;
}
// check length of last part
return !(partlen > 63);
}
STATIC void validate_hex_password(const uint8_t *buf, size_t len) {
for (size_t i = 0; i < len; i++) {
if (!unichar_isxdigit(buf[i])) {
mp_raise_ValueError_varg(MP_ERROR_TEXT("Invalid hex password"));
}
}
}
//| class Radio:
//| """Native wifi radio.
//|
//| This class manages the station and access point functionality of the native
//| Wifi radio.
//|
//| """
//|
//| def __init__(self) -> None:
//| """You cannot create an instance of `wifi.Radio`.
//| Use `wifi.radio` to access the sole instance available."""
//| ...
//| enabled: bool
//| """``True`` when the wifi radio is enabled.
//| If you set the value to ``False``, any open sockets will be closed.
//| """
STATIC mp_obj_t wifi_radio_get_enabled(mp_obj_t self) {
return mp_obj_new_bool(common_hal_wifi_radio_get_enabled(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_enabled_obj, wifi_radio_get_enabled);
static mp_obj_t wifi_radio_set_enabled(mp_obj_t self, mp_obj_t value) {
const bool enabled = mp_obj_is_true(value);
common_hal_wifi_radio_set_enabled(self, enabled);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(wifi_radio_set_enabled_obj, wifi_radio_set_enabled);
MP_PROPERTY_GETSET(wifi_radio_enabled_obj,
(mp_obj_t)&wifi_radio_get_enabled_obj,
(mp_obj_t)&wifi_radio_set_enabled_obj);
//| hostname: Union[str | ReadableBuffer]
//| """Hostname for wifi interface. When the hostname is altered after interface started/connected
//| the changes would only be reflected once the interface restarts/reconnects."""
STATIC mp_obj_t wifi_radio_get_hostname(mp_obj_t self_in) {
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(self_in);
return common_hal_wifi_radio_get_hostname(self);
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_hostname_obj, wifi_radio_get_hostname);
STATIC mp_obj_t wifi_radio_set_hostname(mp_obj_t self_in, mp_obj_t hostname_in) {
mp_buffer_info_t hostname;
mp_get_buffer_raise(hostname_in, &hostname, MP_BUFFER_READ);
mp_arg_validate_length_range(hostname.len, 1, 253, MP_QSTR_hostname);
if (!hostname_valid(hostname.buf, hostname.len)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid hostname"));
}
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_wifi_radio_set_hostname(self, hostname.buf);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(wifi_radio_set_hostname_obj, wifi_radio_set_hostname);
MP_PROPERTY_GETSET(wifi_radio_hostname_obj,
(mp_obj_t)&wifi_radio_get_hostname_obj,
(mp_obj_t)&wifi_radio_set_hostname_obj);
//| mac_address: ReadableBuffer
//| """MAC address for the station. When the address is altered after interface is connected
//| the changes would only be reflected once the interface reconnects.
//|
//| **Limitations:** Not settable on RP2040 CYW43 boards, such as Pi Pico W.
//| """
STATIC mp_obj_t _wifi_radio_get_mac_address(mp_obj_t self_in) {
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_FROM_PTR(common_hal_wifi_radio_get_mac_address(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_mac_address_obj, _wifi_radio_get_mac_address);
#if CIRCUITPY_WIFI_RADIO_SETTABLE_MAC_ADDRESS
STATIC mp_obj_t wifi_radio_set_mac_address(mp_obj_t self_in, mp_obj_t mac_address_in) {
mp_buffer_info_t mac_address;
mp_get_buffer_raise(mac_address_in, &mac_address, MP_BUFFER_READ);
if (mac_address.len != MAC_ADDRESS_LENGTH) {
mp_raise_ValueError(MP_ERROR_TEXT("Invalid MAC address"));
}
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_wifi_radio_set_mac_address(self, mac_address.buf);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(wifi_radio_set_mac_address_obj, wifi_radio_set_mac_address);
#endif
#if CIRCUITPY_WIFI_RADIO_SETTABLE_MAC_ADDRESS
MP_PROPERTY_GETSET(wifi_radio_mac_address_obj,
(mp_obj_t)&wifi_radio_get_mac_address_obj,
(mp_obj_t)&wifi_radio_set_mac_address_obj);
#else
MP_PROPERTY_GETTER(wifi_radio_mac_address_obj,
(mp_obj_t)&wifi_radio_get_mac_address_obj);
#endif
//| tx_power: float
//| """Wifi transmission power, in dBm."""
STATIC mp_obj_t wifi_radio_get_tx_power(mp_obj_t self_in) {
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_float(common_hal_wifi_radio_get_tx_power(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_tx_power_obj, wifi_radio_get_tx_power);
STATIC mp_obj_t wifi_radio_set_tx_power(mp_obj_t self_in, mp_obj_t tx_power_in) {
mp_float_t tx_power = mp_obj_get_float(tx_power_in);
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_wifi_radio_set_tx_power(self, tx_power);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(wifi_radio_set_tx_power_obj, wifi_radio_set_tx_power);
MP_PROPERTY_GETSET(wifi_radio_tx_power_obj,
(mp_obj_t)&wifi_radio_get_tx_power_obj,
(mp_obj_t)&wifi_radio_set_tx_power_obj);
//| mac_address_ap: ReadableBuffer
//| """MAC address for the AP. When the address is altered after interface is started
//| the changes would only be reflected once the interface restarts.
//|
//| **Limitations:** Not settable on RP2040 CYW43 boards, such as Pi Pico W.
//| """
STATIC mp_obj_t wifi_radio_get_mac_address_ap(mp_obj_t self_in) {
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_FROM_PTR(common_hal_wifi_radio_get_mac_address_ap(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_mac_address_ap_obj, wifi_radio_get_mac_address_ap);
#if CIRCUITPY_WIFI_RADIO_SETTABLE_MAC_ADDRESS
STATIC mp_obj_t wifi_radio_set_mac_address_ap(mp_obj_t self_in, mp_obj_t mac_address_in) {
mp_buffer_info_t mac_address;
mp_get_buffer_raise(mac_address_in, &mac_address, MP_BUFFER_READ);
if (mac_address.len != MAC_ADDRESS_LENGTH) {
mp_raise_ValueError(MP_ERROR_TEXT("Invalid MAC address"));
}
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_wifi_radio_set_mac_address_ap(self, mac_address.buf);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(wifi_radio_set_mac_address_ap_obj, wifi_radio_set_mac_address_ap);
#endif
#if CIRCUITPY_WIFI_RADIO_SETTABLE_MAC_ADDRESS
MP_PROPERTY_GETSET(wifi_radio_mac_address_ap_obj,
(mp_obj_t)&wifi_radio_get_mac_address_ap_obj,
(mp_obj_t)&wifi_radio_set_mac_address_ap_obj);
#else
MP_PROPERTY_GETTER(wifi_radio_mac_address_ap_obj,
(mp_obj_t)&wifi_radio_get_mac_address_ap_obj);
#endif
//| def start_scanning_networks(
//| self, *, start_channel: int = 1, stop_channel: int = 11
//| ) -> Iterable[Network]:
//| """Scans for available wifi networks over the given channel range. Make sure the channels are allowed in your country.
//|
//| .. note::
//|
//| In the raspberrypi port (RP2040 CYW43), ``start_channel`` and ``stop_channel`` are ignored.
//| """
//| ...
STATIC mp_obj_t wifi_radio_start_scanning_networks(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_start_channel, ARG_stop_channel };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_start_channel, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_stop_channel, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 11} },
};
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t start_channel =
(uint8_t)mp_arg_validate_int_range(args[ARG_start_channel].u_int, 1, 14, MP_QSTR_start_channel);
uint8_t stop_channel =
(uint8_t)mp_arg_validate_int_range(args[ARG_stop_channel].u_int, 1, 14, MP_QSTR_stop_channel);
// Swap if in reverse order, without complaining.
if (start_channel > stop_channel) {
uint8_t temp = stop_channel;
stop_channel = start_channel;
start_channel = temp;
}
return common_hal_wifi_radio_start_scanning_networks(self, start_channel, stop_channel);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(wifi_radio_start_scanning_networks_obj, 1, wifi_radio_start_scanning_networks);
//| def stop_scanning_networks(self) -> None:
//| """Stop scanning for Wifi networks and free any resources used to do it."""
//| ...
STATIC mp_obj_t wifi_radio_stop_scanning_networks(mp_obj_t self_in) {
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_wifi_radio_stop_scanning_networks(self);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_stop_scanning_networks_obj, wifi_radio_stop_scanning_networks);
//| def start_station(self) -> None:
//| """Starts a Station."""
//| ...
STATIC mp_obj_t wifi_radio_start_station(mp_obj_t self) {
common_hal_wifi_radio_start_station(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_start_station_obj, wifi_radio_start_station);
//| def stop_station(self) -> None:
//| """Stops the Station."""
//| ...
STATIC mp_obj_t wifi_radio_stop_station(mp_obj_t self) {
common_hal_wifi_radio_stop_station(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_stop_station_obj, wifi_radio_stop_station);
//| def start_ap(
//| self,
//| ssid: Union[str | ReadableBuffer],
//| password: Union[str | ReadableBuffer] = b"",
//| *,
//| channel: int = 1,
//| authmode: Iterable[AuthMode] = (),
//| max_connections: Optional[int] = 4,
//| ) -> None:
//| """Starts running an access point with the specified ssid and password.
//|
//| If ``channel`` is given, the access point will use that channel unless
//| a station is already operating on a different channel.
//|
//| If ``authmode`` is not None, the access point will use the given authentication modes.
//| If a non-empty password is given, ``authmode`` must not include ``OPEN``.
//| If ``authmode`` is not given or is an empty iterable,
//| ``(wifi.AuthMode.OPEN,)`` will be used when the password is the empty string,
//| otherwise ``authmode`` will be ``(wifi.AuthMode.WPA, wifi.AuthMode.WPA2, wifi.AuthMode.PSK)``.
//|
//| **Limitations:** On Espressif, ``authmode`` with a non-empty password must include
//| `wifi.AuthMode.PSK`, and one or both of `wifi.AuthMode.WPA` and `wifi.AuthMode.WPA2`.
//| On Pi Pico W, ``authmode`` is ignored; it is always ``(wifi.AuthMode.WPA2, wifi.AuthMode.PSK)``
//| with a non-empty password, or ``(wifi.AuthMode.OPEN)``, when no password is given.
//| On Pi Pico W, the AP can be started and stopped only once per reboot.
//|
//| The length of ``password`` must be 8-63 characters if it is ASCII,
//| or exactly 64 hexadecimal characters if it is the hex form of the 256-bit key.
//|
//| If ``max_connections`` is given, the access point will allow up to
//| that number of stations to connect.
//|
//| .. note::
//|
//| In the raspberrypi port (RP2040 CYW43), ``max_connections`` is ignored.
//| """
//| ...
STATIC mp_obj_t wifi_radio_start_ap(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_ssid, ARG_password, ARG_channel, ARG_authmode, ARG_max_connections };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_ssid, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_password, MP_ARG_OBJ, {.u_obj = mp_const_empty_bytes} },
{ MP_QSTR_channel, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_authmode, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_empty_tuple } },
{ MP_QSTR_max_connections, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 4} },
};
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// 0 indicates no modes were given. Otherwise authmode is the OR of bits signifying the modes.
uint32_t authmode = 0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(args[ARG_authmode].u_obj, &iter_buf);
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
authmode |= cp_enum_value(&wifi_authmode_type, item, MP_QSTR_authmode);
}
mp_buffer_info_t ssid;
mp_get_buffer_raise(args[ARG_ssid].u_obj, &ssid, MP_BUFFER_READ);
mp_arg_validate_length_range(ssid.len, 1, 32, MP_QSTR_ssid);
mp_buffer_info_t password;
mp_get_buffer_raise(args[ARG_password].u_obj, &password, MP_BUFFER_READ);
if (authmode == 0) {
if (password.len == 0) {
authmode = AUTHMODE_OPEN;
} else {
authmode = AUTHMODE_WPA | AUTHMODE_WPA2 | AUTHMODE_PSK;
}
}
mp_int_t channel = mp_arg_validate_int_range(args[ARG_channel].u_int, 1, 13, MP_QSTR_channel);
if (authmode == AUTHMODE_OPEN && password.len > 0) {
mp_raise_ValueError(MP_ERROR_TEXT("AuthMode.OPEN is not used with password"));
}
if (authmode != AUTHMODE_OPEN) {
mp_arg_validate_length_range(password.len, 8, 64, MP_QSTR_password);
if (password.len == 64) {
validate_hex_password(password.buf, password.len);
}
}
common_hal_wifi_radio_start_ap(self, ssid.buf, ssid.len, password.buf, password.len, channel, authmode, args[ARG_max_connections].u_int);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(wifi_radio_start_ap_obj, 1, wifi_radio_start_ap);
//| def stop_ap(self) -> None:
//| """Stops the access point."""
//| ...
STATIC mp_obj_t wifi_radio_stop_ap(mp_obj_t self) {
common_hal_wifi_radio_stop_ap(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_stop_ap_obj, wifi_radio_stop_ap);
//| ap_active: bool
//| """True if running as an access point. (read-only)"""
STATIC mp_obj_t wifi_radio_get_ap_active(mp_obj_t self) {
return mp_obj_new_bool(common_hal_wifi_radio_get_ap_active(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_ap_active_obj, wifi_radio_get_ap_active);
MP_PROPERTY_GETTER(wifi_radio_ap_active_obj,
(mp_obj_t)&wifi_radio_get_ap_active_obj);
//| def connect(
//| self,
//| ssid: Union[str | ReadableBuffer],
//| password: Union[str | ReadableBuffer] = b"",
//| *,
//| channel: int = 0,
//| bssid: Optional[Union[str | ReadableBuffer]] = None,
//| timeout: Optional[float] = None,
//| ) -> None:
//| """Connects to the given ssid and waits for an ip address. Reconnections are handled
//| automatically once one connection succeeds.
//|
//| The length of ``password`` must be 0 if there is no password, 8-63 characters if it is ASCII,
//| or exactly 64 hexadecimal characters if it is the hex form of the 256-bit key.
//|
//| By default, this will scan all channels and connect to the access point (AP) with the
//| given ``ssid`` and greatest signal strength (rssi).
//|
//| If ``channel`` is non-zero, the scan will begin with the given channel and connect to
//| the first AP with the given ``ssid``. This can speed up the connection time
//| significantly because a full scan doesn't occur.
//|
//| If ``bssid`` is given and not None, the scan will start at the first channel or the one given and
//| connect to the AP with the given ``bssid`` and ``ssid``."""
//| ...
STATIC mp_obj_t wifi_radio_connect(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_ssid, ARG_password, ARG_channel, ARG_bssid, ARG_timeout };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_ssid, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_password, MP_ARG_OBJ, {.u_obj = mp_const_empty_bytes} },
{ MP_QSTR_channel, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bssid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_float_t timeout = 0;
if (args[ARG_timeout].u_obj != mp_const_none) {
timeout = mp_obj_get_float(args[ARG_timeout].u_obj);
}
mp_buffer_info_t ssid;
ssid.len = 0;
mp_get_buffer_raise(args[ARG_ssid].u_obj, &ssid, MP_BUFFER_READ);
mp_arg_validate_length_range(ssid.len, 1, 32, MP_QSTR_ssid);
mp_buffer_info_t password;
password.len = 0;
if (args[ARG_password].u_obj != mp_const_none) {
mp_get_buffer_raise(args[ARG_password].u_obj, &password, MP_BUFFER_READ);
if (password.len != 0) {
mp_arg_validate_length_range(password.len, 8, 64, MP_QSTR_password);
if (password.len == 64) {
validate_hex_password(password.buf, password.len);
}
}
}
#define MAC_ADDRESS_LENGTH 6
mp_buffer_info_t bssid;
bssid.len = 0;
// Should probably make sure bssid is just bytes and not something else too
if (args[ARG_bssid].u_obj != mp_const_none) {
mp_get_buffer_raise(args[ARG_bssid].u_obj, &bssid, MP_BUFFER_READ);
if (bssid.len != MAC_ADDRESS_LENGTH) {
mp_raise_ValueError(MP_ERROR_TEXT("Invalid BSSID"));
}
}
wifi_radio_error_t error = common_hal_wifi_radio_connect(self, ssid.buf, ssid.len, password.buf, password.len, args[ARG_channel].u_int, timeout, bssid.buf, bssid.len);
if (error == WIFI_RADIO_ERROR_AUTH_FAIL) {
mp_raise_ConnectionError(MP_ERROR_TEXT("Authentication failure"));
} else if (error == WIFI_RADIO_ERROR_NO_AP_FOUND) {
mp_raise_ConnectionError(MP_ERROR_TEXT("No network with that ssid"));
} else if (error != WIFI_RADIO_ERROR_NONE) {
mp_raise_msg_varg(&mp_type_ConnectionError, MP_ERROR_TEXT("Unknown failure %d"), error);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(wifi_radio_connect_obj, 1, wifi_radio_connect);
//| connected: bool
//| """True if connected to an access point (read-only)."""
STATIC mp_obj_t wifi_radio_get_connected(mp_obj_t self) {
return mp_obj_new_bool(common_hal_wifi_radio_get_connected(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_connected_obj, wifi_radio_get_connected);
MP_PROPERTY_GETTER(wifi_radio_connected_obj,
(mp_obj_t)&wifi_radio_get_connected_obj);
//| ipv4_gateway: Optional[ipaddress.IPv4Address]
//| """IP v4 Address of the station gateway when connected to an access point. None otherwise. (read-only)"""
STATIC mp_obj_t wifi_radio_get_ipv4_gateway(mp_obj_t self) {
return common_hal_wifi_radio_get_ipv4_gateway(self);
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_ipv4_gateway_obj, wifi_radio_get_ipv4_gateway);
MP_PROPERTY_GETTER(wifi_radio_ipv4_gateway_obj,
(mp_obj_t)&wifi_radio_get_ipv4_gateway_obj);
//| ipv4_gateway_ap: Optional[ipaddress.IPv4Address]
//| """IP v4 Address of the access point gateway, when enabled. None otherwise. (read-only)"""
STATIC mp_obj_t wifi_radio_get_ipv4_gateway_ap(mp_obj_t self) {
return common_hal_wifi_radio_get_ipv4_gateway_ap(self);
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_ipv4_gateway_ap_obj, wifi_radio_get_ipv4_gateway_ap);
MP_PROPERTY_GETTER(wifi_radio_ipv4_gateway_ap_obj,
(mp_obj_t)&wifi_radio_get_ipv4_gateway_ap_obj);
//| ipv4_subnet: Optional[ipaddress.IPv4Address]
//| """IP v4 Address of the station subnet when connected to an access point. None otherwise. (read-only)"""
STATIC mp_obj_t wifi_radio_get_ipv4_subnet(mp_obj_t self) {
return common_hal_wifi_radio_get_ipv4_subnet(self);
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_ipv4_subnet_obj, wifi_radio_get_ipv4_subnet);
MP_PROPERTY_GETTER(wifi_radio_ipv4_subnet_obj,
(mp_obj_t)&wifi_radio_get_ipv4_subnet_obj);
//| ipv4_subnet_ap: Optional[ipaddress.IPv4Address]
//| """IP v4 Address of the access point subnet, when enabled. None otherwise. (read-only)"""
STATIC mp_obj_t wifi_radio_get_ipv4_subnet_ap(mp_obj_t self) {
return common_hal_wifi_radio_get_ipv4_subnet_ap(self);
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_ipv4_subnet_ap_obj, wifi_radio_get_ipv4_subnet_ap);
MP_PROPERTY_GETTER(wifi_radio_ipv4_subnet_ap_obj,
(mp_obj_t)&wifi_radio_get_ipv4_subnet_ap_obj);
//| def set_ipv4_address(
//| self,
//| *,
//| ipv4: ipaddress.IPv4Address,
//| netmask: ipaddress.IPv4Address,
//| gateway: ipaddress.IPv4Address,
//| ipv4_dns: Optional[ipaddress.IPv4Address],
//| ) -> None:
//| """Sets the IP v4 address of the station. Must include the netmask and gateway. DNS address is optional.
//| Setting the address manually will stop the DHCP client.
//|
//| .. note::
//|
//| In the raspberrypi port (RP2040 CYW43), the access point needs to be started before the IP v4 address can be set.
//| """
//| ...
STATIC mp_obj_t wifi_radio_set_ipv4_address(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_ipv4, ARG_netmask, ARG_gateway, ARG_ipv4_dns };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_ipv4, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, },
{ MP_QSTR_netmask, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, },
{ MP_QSTR_gateway, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, },
{ MP_QSTR_ipv4_dns, MP_ARG_OBJ | MP_ARG_KW_ONLY, {.u_obj = MP_OBJ_NULL} },
};
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
common_hal_wifi_radio_set_ipv4_address(self, args[ARG_ipv4].u_obj, args[ARG_netmask].u_obj, args[ARG_gateway].u_obj, args[ARG_ipv4_dns].u_obj);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(wifi_radio_set_ipv4_address_obj, 1, wifi_radio_set_ipv4_address);
//| def set_ipv4_address_ap(
//| self,
//| *,
//| ipv4: ipaddress.IPv4Address,
//| netmask: ipaddress.IPv4Address,
//| gateway: ipaddress.IPv4Address,
//| ) -> None:
//| """Sets the IP v4 address of the access point. Must include the netmask and gateway."""
//| ...
STATIC mp_obj_t wifi_radio_set_ipv4_address_ap(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_ipv4, ARG_netmask, ARG_gateway };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_ipv4, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, },
{ MP_QSTR_netmask, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, },
{ MP_QSTR_gateway, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, },
};
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
common_hal_wifi_radio_set_ipv4_address_ap(self, args[ARG_ipv4].u_obj, args[ARG_netmask].u_obj, args[ARG_gateway].u_obj);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(wifi_radio_set_ipv4_address_ap_obj, 1, wifi_radio_set_ipv4_address_ap);
//| ipv4_address: Optional[ipaddress.IPv4Address]
//| """IP v4 Address of the station when connected to an access point. None otherwise. (read-only)"""
STATIC mp_obj_t _wifi_radio_get_ipv4_address(mp_obj_t self) {
return common_hal_wifi_radio_get_ipv4_address(self);
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_ipv4_address_obj, _wifi_radio_get_ipv4_address);
MP_PROPERTY_GETTER(wifi_radio_ipv4_address_obj,
(mp_obj_t)&wifi_radio_get_ipv4_address_obj);
//| ipv4_address_ap: Optional[ipaddress.IPv4Address]
//| """IP v4 Address of the access point, when enabled. None otherwise. (read-only)"""
STATIC mp_obj_t wifi_radio_get_ipv4_address_ap(mp_obj_t self) {
return common_hal_wifi_radio_get_ipv4_address_ap(self);
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_ipv4_address_ap_obj, wifi_radio_get_ipv4_address_ap);
MP_PROPERTY_GETTER(wifi_radio_ipv4_address_ap_obj,
(mp_obj_t)&wifi_radio_get_ipv4_address_ap_obj);
//| ipv4_dns: ipaddress.IPv4Address
//| """IP v4 Address of the DNS server to be used."""
STATIC mp_obj_t wifi_radio_get_ipv4_dns(mp_obj_t self) {
return common_hal_wifi_radio_get_ipv4_dns(self);
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_ipv4_dns_obj, wifi_radio_get_ipv4_dns);
STATIC mp_obj_t wifi_radio_set_ipv4_dns(mp_obj_t self, mp_obj_t ipv4_dns_addr) {
common_hal_wifi_radio_set_ipv4_dns(self, ipv4_dns_addr);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(wifi_radio_set_ipv4_dns_obj, wifi_radio_set_ipv4_dns);
MP_PROPERTY_GETSET(wifi_radio_ipv4_dns_obj,
(mp_obj_t)&wifi_radio_get_ipv4_dns_obj,
(mp_obj_t)&wifi_radio_set_ipv4_dns_obj);
//| ap_info: Optional[Network]
//| """Network object containing BSSID, SSID, authmode, channel, country and RSSI when connected to an access point. None otherwise."""
STATIC mp_obj_t wifi_radio_get_ap_info(mp_obj_t self) {
return common_hal_wifi_radio_get_ap_info(self);
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_get_ap_info_obj, wifi_radio_get_ap_info);
//| def start_dhcp(self) -> None:
//| """Starts the station DHCP client."""
//| ...
STATIC mp_obj_t wifi_radio_start_dhcp_client(mp_obj_t self) {
common_hal_wifi_radio_start_dhcp_client(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_start_dhcp_client_obj, wifi_radio_start_dhcp_client);
//| def stop_dhcp(self) -> None:
//| """Stops the station DHCP client. Needed to assign a static IP address."""
//| ...
STATIC mp_obj_t wifi_radio_stop_dhcp_client(mp_obj_t self) {
common_hal_wifi_radio_stop_dhcp_client(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_stop_dhcp_client_obj, wifi_radio_stop_dhcp_client);
//| def start_dhcp_ap(self) -> None:
//| """Starts the access point DHCP server."""
//| ...
STATIC mp_obj_t wifi_radio_start_dhcp_server(mp_obj_t self) {
common_hal_wifi_radio_start_dhcp_server(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_start_dhcp_server_obj, wifi_radio_start_dhcp_server);
//| def stop_dhcp_ap(self) -> None:
//| """Stops the access point DHCP server. Needed to assign a static IP address."""
//| ...
STATIC mp_obj_t wifi_radio_stop_dhcp_server(mp_obj_t self) {
common_hal_wifi_radio_stop_dhcp_server(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(wifi_radio_stop_dhcp_server_obj, wifi_radio_stop_dhcp_server);
MP_PROPERTY_GETTER(wifi_radio_ap_info_obj,
(mp_obj_t)&wifi_radio_get_ap_info_obj);
//| def ping(
//| self, ip: ipaddress.IPv4Address, *, timeout: Optional[float] = 0.5
//| ) -> Optional[float]:
//| """Ping an IP to test connectivity. Returns echo time in seconds.
//| Returns None when it times out."""
//| ...
//|
STATIC mp_obj_t wifi_radio_ping(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_ip, ARG_timeout };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_ip, MP_ARG_REQUIRED | MP_ARG_OBJ, },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
wifi_radio_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_float_t timeout = 0.5;
if (args[ARG_timeout].u_obj != mp_const_none) {
timeout = mp_obj_get_float(args[ARG_timeout].u_obj);
}
mp_int_t time_ms = common_hal_wifi_radio_ping(self, args[ARG_ip].u_obj, timeout);
if (time_ms == -1) {
return mp_const_none;
}
return mp_obj_new_float(time_ms / 1000.0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(wifi_radio_ping_obj, 1, wifi_radio_ping);
STATIC const mp_rom_map_elem_t wifi_radio_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_enabled), MP_ROM_PTR(&wifi_radio_enabled_obj) },
{ MP_ROM_QSTR(MP_QSTR_hostname), MP_ROM_PTR(&wifi_radio_hostname_obj) },
{ MP_ROM_QSTR(MP_QSTR_mac_address), MP_ROM_PTR(&wifi_radio_mac_address_obj) },
{ MP_ROM_QSTR(MP_QSTR_mac_address_ap), MP_ROM_PTR(&wifi_radio_mac_address_ap_obj) },
{ MP_ROM_QSTR(MP_QSTR_tx_power), MP_ROM_PTR(&wifi_radio_tx_power_obj) },
{ MP_ROM_QSTR(MP_QSTR_start_scanning_networks), MP_ROM_PTR(&wifi_radio_start_scanning_networks_obj) },
{ MP_ROM_QSTR(MP_QSTR_stop_scanning_networks), MP_ROM_PTR(&wifi_radio_stop_scanning_networks_obj) },
{ MP_ROM_QSTR(MP_QSTR_start_station), MP_ROM_PTR(&wifi_radio_start_station_obj) },
{ MP_ROM_QSTR(MP_QSTR_stop_station), MP_ROM_PTR(&wifi_radio_stop_station_obj) },
{ MP_ROM_QSTR(MP_QSTR_start_ap), MP_ROM_PTR(&wifi_radio_start_ap_obj) },
{ MP_ROM_QSTR(MP_QSTR_stop_ap), MP_ROM_PTR(&wifi_radio_stop_ap_obj) },
{ MP_ROM_QSTR(MP_QSTR_ap_active), MP_ROM_PTR(&wifi_radio_ap_active_obj) },
{ MP_ROM_QSTR(MP_QSTR_start_dhcp), MP_ROM_PTR(&wifi_radio_start_dhcp_client_obj) },
{ MP_ROM_QSTR(MP_QSTR_stop_dhcp), MP_ROM_PTR(&wifi_radio_stop_dhcp_client_obj) },
{ MP_ROM_QSTR(MP_QSTR_start_dhcp_ap), MP_ROM_PTR(&wifi_radio_start_dhcp_server_obj) },
{ MP_ROM_QSTR(MP_QSTR_stop_dhcp_ap), MP_ROM_PTR(&wifi_radio_stop_dhcp_server_obj) },
{ MP_ROM_QSTR(MP_QSTR_connect), MP_ROM_PTR(&wifi_radio_connect_obj) },
// { MP_ROM_QSTR(MP_QSTR_connect_to_enterprise), MP_ROM_PTR(&wifi_radio_connect_to_enterprise_obj) },
{ MP_ROM_QSTR(MP_QSTR_connected), MP_ROM_PTR(&wifi_radio_connected_obj) },
{ MP_ROM_QSTR(MP_QSTR_ap_info), MP_ROM_PTR(&wifi_radio_ap_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_ipv4_dns), MP_ROM_PTR(&wifi_radio_ipv4_dns_obj) },
{ MP_ROM_QSTR(MP_QSTR_ipv4_gateway), MP_ROM_PTR(&wifi_radio_ipv4_gateway_obj) },
{ MP_ROM_QSTR(MP_QSTR_ipv4_gateway_ap), MP_ROM_PTR(&wifi_radio_ipv4_gateway_ap_obj) },
{ MP_ROM_QSTR(MP_QSTR_ipv4_subnet), MP_ROM_PTR(&wifi_radio_ipv4_subnet_obj) },
{ MP_ROM_QSTR(MP_QSTR_ipv4_subnet_ap), MP_ROM_PTR(&wifi_radio_ipv4_subnet_ap_obj) },
{ MP_ROM_QSTR(MP_QSTR_ipv4_address), MP_ROM_PTR(&wifi_radio_ipv4_address_obj) },
{ MP_ROM_QSTR(MP_QSTR_ipv4_address_ap), MP_ROM_PTR(&wifi_radio_ipv4_address_ap_obj) },
{ MP_ROM_QSTR(MP_QSTR_set_ipv4_address), MP_ROM_PTR(&wifi_radio_set_ipv4_address_obj) },
{ MP_ROM_QSTR(MP_QSTR_set_ipv4_address_ap), MP_ROM_PTR(&wifi_radio_set_ipv4_address_ap_obj) },
{ MP_ROM_QSTR(MP_QSTR_ping), MP_ROM_PTR(&wifi_radio_ping_obj) },
};
STATIC MP_DEFINE_CONST_DICT(wifi_radio_locals_dict, wifi_radio_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
wifi_radio_type,
MP_QSTR_Radio,
MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS,
locals_dict, &wifi_radio_locals_dict
);