1274 lines
37 KiB
C
1274 lines
37 KiB
C
#include <stdio.h>
|
|
#include <stm32f4xx.h>
|
|
#include <stm32f4xx_rcc.h>
|
|
#include <stm32f4xx_gpio.h>
|
|
#include <stm32f4xx_tim.h>
|
|
#include <stm32f4xx_pwr.h>
|
|
#include <stm32f4xx_rtc.h>
|
|
#include <stm32f4xx_usart.h>
|
|
#include <stm32f4xx_rng.h>
|
|
#include <stm_misc.h>
|
|
#include "std.h"
|
|
|
|
#include "misc.h"
|
|
#include "mpyconfig.h"
|
|
#include "gc.h"
|
|
#include "systick.h"
|
|
#include "led.h"
|
|
#include "lcd.h"
|
|
#include "storage.h"
|
|
#include "mma.h"
|
|
#include "usart.h"
|
|
#include "usb.h"
|
|
#include "ff.h"
|
|
#include "timer.h"
|
|
#include "audio.h"
|
|
#include "pybwlan.h"
|
|
|
|
int errno;
|
|
|
|
extern uint32_t _heap_start;
|
|
|
|
static FATFS fatfs0;
|
|
|
|
void flash_error(int n) {
|
|
for (int i = 0; i < n; i++) {
|
|
led_state(PYB_LED_R1, 1);
|
|
led_state(PYB_LED_R2, 0);
|
|
sys_tick_delay_ms(250);
|
|
led_state(PYB_LED_R1, 0);
|
|
led_state(PYB_LED_R2, 1);
|
|
sys_tick_delay_ms(250);
|
|
}
|
|
led_state(PYB_LED_R2, 0);
|
|
}
|
|
|
|
static void impl02_c_version(void) {
|
|
int x = 0;
|
|
while (x < 400) {
|
|
int y = 0;
|
|
while (y < 400) {
|
|
volatile int z = 0;
|
|
while (z < 400) {
|
|
z = z + 1;
|
|
}
|
|
y = y + 1;
|
|
}
|
|
x = x + 1;
|
|
}
|
|
}
|
|
|
|
#define PYB_USRSW_PORT (GPIOA)
|
|
#define PYB_USRSW_PIN (GPIO_Pin_13)
|
|
|
|
void sw_init(void) {
|
|
// make it an input with pull-up
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
GPIO_InitStructure.GPIO_Pin = PYB_USRSW_PIN;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
|
|
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
|
|
GPIO_Init(PYB_USRSW_PORT, &GPIO_InitStructure);
|
|
}
|
|
|
|
int sw_get(void) {
|
|
if (PYB_USRSW_PORT->IDR & PYB_USRSW_PIN) {
|
|
// pulled high, so switch is not pressed
|
|
return 0;
|
|
} else {
|
|
// pulled low, so switch is pressed
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
void __fatal_error(const char *msg) {
|
|
lcd_print_strn("\nFATAL ERROR:\n", 14);
|
|
lcd_print_strn(msg, strlen(msg));
|
|
for (;;) {
|
|
flash_error(1);
|
|
}
|
|
}
|
|
|
|
#include "nlr.h"
|
|
#include "misc.h"
|
|
#include "lexer.h"
|
|
#include "lexerstm.h"
|
|
#include "mpyconfig.h"
|
|
#include "parse.h"
|
|
#include "compile.h"
|
|
#include "runtime.h"
|
|
#include "repl.h"
|
|
|
|
static qstr pyb_config_source_dir = 0;
|
|
static qstr pyb_config_main = 0;
|
|
|
|
py_obj_t pyb_source_dir(py_obj_t source_dir) {
|
|
pyb_config_source_dir = py_obj_get_qstr(source_dir);
|
|
return py_const_none;
|
|
}
|
|
|
|
py_obj_t pyb_main(py_obj_t main) {
|
|
pyb_config_main = py_obj_get_qstr(main);
|
|
return py_const_none;
|
|
}
|
|
|
|
// sync all file systems
|
|
py_obj_t pyb_sync(void) {
|
|
storage_flush();
|
|
return py_const_none;
|
|
}
|
|
|
|
py_obj_t pyb_delay(py_obj_t count) {
|
|
sys_tick_delay_ms(py_obj_get_int(count));
|
|
return py_const_none;
|
|
}
|
|
|
|
py_obj_t pyb_led(py_obj_t state) {
|
|
led_state(PYB_LED_G1, rt_is_true(state));
|
|
return state;
|
|
}
|
|
|
|
py_obj_t py_obj_new_user(const py_user_info_t *info, machine_uint_t data1, machine_uint_t data2);
|
|
void py_user_get_data(py_obj_t o, machine_uint_t *data1, machine_uint_t *data2);
|
|
void py_user_set_data(py_obj_t o, machine_uint_t data1, machine_uint_t data2);
|
|
|
|
py_obj_t led_obj_on(py_obj_t self) {
|
|
machine_uint_t led_id;
|
|
py_user_get_data(self, &led_id, NULL);
|
|
switch (led_id) {
|
|
case 1: led_state(PYB_LED_G1, 1); break;
|
|
case 2: led_state(PYB_LED_G2, 1); break;
|
|
}
|
|
return py_const_none;
|
|
}
|
|
|
|
py_obj_t led_obj_off(py_obj_t self) {
|
|
machine_uint_t led_id;
|
|
py_user_get_data(self, &led_id, NULL);
|
|
switch (led_id) {
|
|
case 1: led_state(PYB_LED_G1, 0); break;
|
|
case 2: led_state(PYB_LED_G2, 0); break;
|
|
}
|
|
return py_const_none;
|
|
}
|
|
|
|
const py_user_info_t led_obj_info = {
|
|
"Led",
|
|
NULL, // print
|
|
{
|
|
{"on", 0, led_obj_on},
|
|
{"off", 0, led_obj_off},
|
|
{NULL, 0, NULL},
|
|
}
|
|
};
|
|
|
|
py_obj_t pyb_Led(py_obj_t led_id) {
|
|
return py_obj_new_user(&led_obj_info, (machine_uint_t)py_obj_get_int(led_id), 0);
|
|
}
|
|
|
|
py_obj_t pyb_sw(void) {
|
|
if (sw_get()) {
|
|
return py_const_true;
|
|
} else {
|
|
return py_const_false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
void g(uint i) {
|
|
printf("g:%d\n", i);
|
|
if (i & 1) {
|
|
nlr_jump((void*)(42 + i));
|
|
}
|
|
}
|
|
void f(void) {
|
|
nlr_buf_t nlr;
|
|
int i;
|
|
for (i = 0; i < 4; i++) {
|
|
printf("f:loop:%d:%p\n", i, &nlr);
|
|
if (nlr_push(&nlr) == 0) {
|
|
// normal
|
|
//printf("a:%p:%p %p %p %u\n", &nlr, nlr.ip, nlr.sp, nlr.prev, nlr.ret_val);
|
|
g(i);
|
|
printf("f:lp:%d:nrm\n", i);
|
|
nlr_pop();
|
|
} else {
|
|
// nlr
|
|
//printf("b:%p:%p %p %p %u\n", &nlr, nlr.ip, nlr.sp, nlr.prev, nlr.ret_val);
|
|
printf("f:lp:%d:nlr:%d\n", i, (int)nlr.ret_val);
|
|
}
|
|
}
|
|
}
|
|
void nlr_test(void) {
|
|
f(1);
|
|
}
|
|
*/
|
|
|
|
void fatality(void) {
|
|
led_state(PYB_LED_R1, 1);
|
|
led_state(PYB_LED_G1, 1);
|
|
led_state(PYB_LED_R2, 1);
|
|
led_state(PYB_LED_G2, 1);
|
|
}
|
|
|
|
static const char fresh_boot_py[] =
|
|
"# boot.py -- run on boot-up\n"
|
|
"# can run arbitrary Python, but best to keep it minimal\n"
|
|
"\n"
|
|
"pyb.source_dir('/src')\n"
|
|
"pyb.main('main.py')\n"
|
|
"#pyb.usb_usr('VCP')\n"
|
|
"#pyb.usb_msd(True, 'dual partition')\n"
|
|
"#pyb.flush_cache(False)\n"
|
|
"#pyb.error_log('error.txt')\n"
|
|
;
|
|
|
|
// get lots of info about the board
|
|
static py_obj_t pyb_info(void) {
|
|
// get and print clock speeds
|
|
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
|
|
{
|
|
RCC_ClocksTypeDef rcc_clocks;
|
|
RCC_GetClocksFreq(&rcc_clocks);
|
|
printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency);
|
|
}
|
|
|
|
// to print info about memory
|
|
{
|
|
extern void *_sidata;
|
|
extern void *_sdata;
|
|
extern void *_edata;
|
|
extern void *_sbss;
|
|
extern void *_ebss;
|
|
extern void *_estack;
|
|
extern void *_etext;
|
|
printf("_sidata=%p\n", &_sidata);
|
|
printf("_sdata=%p\n", &_sdata);
|
|
printf("_edata=%p\n", &_edata);
|
|
printf("_sbss=%p\n", &_sbss);
|
|
printf("_ebss=%p\n", &_ebss);
|
|
printf("_estack=%p\n", &_estack);
|
|
printf("_etext=%p\n", &_etext);
|
|
printf("_heap_start=%p\n", &_heap_start);
|
|
}
|
|
|
|
// GC info
|
|
{
|
|
gc_info_t info;
|
|
gc_info(&info);
|
|
printf("GC:\n");
|
|
printf(" %lu total\n", info.total);
|
|
printf(" %lu : %lu\n", info.used, info.free);
|
|
printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block);
|
|
}
|
|
|
|
// free space on flash
|
|
{
|
|
DWORD nclst;
|
|
FATFS *fatfs;
|
|
f_getfree("0:", &nclst, &fatfs);
|
|
printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
|
|
}
|
|
|
|
return py_const_none;
|
|
}
|
|
|
|
py_obj_t pyb_usart_send(py_obj_t data) {
|
|
usart_tx_char(py_obj_get_int(data));
|
|
return py_const_none;
|
|
}
|
|
|
|
py_obj_t pyb_usart_receive(void) {
|
|
return py_obj_new_int(usart_rx_char());
|
|
}
|
|
|
|
py_obj_t pyb_usart_status(void) {
|
|
if (usart_rx_any()) {
|
|
return py_const_true;
|
|
} else {
|
|
return py_const_false;
|
|
}
|
|
}
|
|
|
|
char *strdup(const char *str) {
|
|
uint32_t len = strlen(str);
|
|
char *s2 = m_new(char, len + 1);
|
|
memcpy(s2, str, len);
|
|
s2[len] = 0;
|
|
return s2;
|
|
}
|
|
|
|
#define READLINE_HIST_SIZE (8)
|
|
|
|
static const char *readline_hist[READLINE_HIST_SIZE] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
|
|
|
|
void stdout_tx_str(const char *str) {
|
|
usart_tx_str(str);
|
|
usb_vcp_send_str(str);
|
|
}
|
|
|
|
int readline(vstr_t *line, const char *prompt) {
|
|
stdout_tx_str(prompt);
|
|
int len = vstr_len(line);
|
|
int escape = 0;
|
|
int hist_num = 0;
|
|
for (;;) {
|
|
char c;
|
|
for (;;) {
|
|
if (usb_vcp_rx_any() != 0) {
|
|
c = usb_vcp_rx_get();
|
|
break;
|
|
} else if (usart_rx_any()) {
|
|
c = usart_rx_char();
|
|
break;
|
|
}
|
|
sys_tick_delay_ms(1);
|
|
}
|
|
if (escape == 0) {
|
|
if (c == 4 && vstr_len(line) == len) {
|
|
return 0;
|
|
} else if (c == '\r') {
|
|
stdout_tx_str("\r\n");
|
|
for (int i = READLINE_HIST_SIZE - 1; i > 0; i--) {
|
|
readline_hist[i] = readline_hist[i - 1];
|
|
}
|
|
readline_hist[0] = strdup(vstr_str(line));
|
|
return 1;
|
|
} else if (c == 27) {
|
|
escape = true;
|
|
} else if (c == 127) {
|
|
if (vstr_len(line) > len) {
|
|
vstr_cut_tail(line, 1);
|
|
stdout_tx_str("\b \b");
|
|
}
|
|
} else if (32 <= c && c <= 126) {
|
|
vstr_add_char(line, c);
|
|
stdout_tx_str(line->buf + line->len - 1);
|
|
}
|
|
} else if (escape == 1) {
|
|
if (c == '[') {
|
|
escape = 2;
|
|
} else {
|
|
escape = 0;
|
|
}
|
|
} else if (escape == 2) {
|
|
escape = 0;
|
|
if (c == 'A') {
|
|
// up arrow
|
|
if (hist_num < READLINE_HIST_SIZE && readline_hist[hist_num] != NULL) {
|
|
// erase line
|
|
for (int i = line->len - len; i > 0; i--) {
|
|
stdout_tx_str("\b \b");
|
|
}
|
|
// set line to history
|
|
line->len = len;
|
|
vstr_add_str(line, readline_hist[hist_num]);
|
|
// draw line
|
|
stdout_tx_str(readline_hist[hist_num]);
|
|
// increase hist num
|
|
hist_num += 1;
|
|
}
|
|
}
|
|
} else {
|
|
escape = 0;
|
|
}
|
|
sys_tick_delay_ms(10);
|
|
}
|
|
}
|
|
|
|
void do_repl(void) {
|
|
stdout_tx_str("Micro Python 0.5; STM32F405RG; PYBv2\r\n");
|
|
stdout_tx_str("Type \"help\" for more information.\r\n");
|
|
|
|
vstr_t line;
|
|
vstr_init(&line);
|
|
|
|
for (;;) {
|
|
vstr_reset(&line);
|
|
int ret = readline(&line, ">>> ");
|
|
if (ret == 0) {
|
|
// EOF
|
|
break;
|
|
}
|
|
|
|
if (vstr_len(&line) == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (py_repl_is_compound_stmt(vstr_str(&line))) {
|
|
for (;;) {
|
|
vstr_add_char(&line, '\n');
|
|
int len = vstr_len(&line);
|
|
int ret = readline(&line, "... ");
|
|
if (ret == 0 || vstr_len(&line) == len) {
|
|
// done entering compound statement
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
py_lexer_str_buf_t sb;
|
|
py_lexer_t *lex = py_lexer_new_from_str_len("<stdin>", vstr_str(&line), vstr_len(&line), false, &sb);
|
|
py_parse_node_t pn = py_parse(lex, PY_PARSE_SINGLE_INPUT);
|
|
py_lexer_free(lex);
|
|
|
|
if (pn != PY_PARSE_NODE_NULL) {
|
|
bool comp_ok = py_compile(pn, true);
|
|
if (comp_ok) {
|
|
py_obj_t module_fun = rt_make_function_from_id(1);
|
|
if (module_fun != py_const_none) {
|
|
nlr_buf_t nlr;
|
|
uint32_t start = sys_tick_counter;
|
|
if (nlr_push(&nlr) == 0) {
|
|
rt_call_function_0(module_fun);
|
|
nlr_pop();
|
|
uint32_t ticks = sys_tick_counter - start; // TODO implement a function that does this properly
|
|
printf("(took %lu ms)\n", ticks);
|
|
} else {
|
|
// uncaught exception
|
|
py_obj_print((py_obj_t)nlr.ret_val);
|
|
printf("\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
stdout_tx_str("\r\n");
|
|
}
|
|
|
|
bool do_file(const char *filename) {
|
|
py_lexer_file_buf_t fb;
|
|
py_lexer_t *lex = py_lexer_new_from_file(filename, &fb);
|
|
|
|
if (lex == NULL) {
|
|
printf("could not open file '%s' for reading\n", filename);
|
|
return false;
|
|
}
|
|
|
|
py_parse_node_t pn = py_parse(lex, PY_PARSE_FILE_INPUT);
|
|
py_lexer_free(lex);
|
|
|
|
if (pn == PY_PARSE_NODE_NULL) {
|
|
return false;
|
|
}
|
|
|
|
bool comp_ok = py_compile(pn, false);
|
|
if (!comp_ok) {
|
|
return false;
|
|
}
|
|
|
|
py_obj_t module_fun = rt_make_function_from_id(1);
|
|
if (module_fun == py_const_none) {
|
|
return false;
|
|
}
|
|
|
|
nlr_buf_t nlr;
|
|
if (nlr_push(&nlr) == 0) {
|
|
rt_call_function_0(module_fun);
|
|
nlr_pop();
|
|
return true;
|
|
} else {
|
|
// uncaught exception
|
|
py_obj_print((py_obj_t)nlr.ret_val);
|
|
printf("\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#define RAM_START (0x20000000) // fixed for chip
|
|
#define HEAP_END (0x2001c000) // tunable
|
|
#define RAM_END (0x20020000) // fixed for chip
|
|
|
|
void gc_helper_get_regs_and_clean_stack(machine_uint_t *regs, machine_uint_t heap_end);
|
|
|
|
void gc_collect(void) {
|
|
uint32_t start = sys_tick_counter;
|
|
gc_collect_start();
|
|
gc_collect_root((void**)RAM_START, (((uint32_t)&_heap_start) - RAM_START) / 4);
|
|
machine_uint_t regs[10];
|
|
gc_helper_get_regs_and_clean_stack(regs, HEAP_END);
|
|
gc_collect_root((void**)HEAP_END, (RAM_END - HEAP_END) / 4); // will trace regs since they now live in this function on the stack
|
|
gc_collect_end();
|
|
uint32_t ticks = sys_tick_counter - start; // TODO implement a function that does this properly
|
|
gc_info_t info;
|
|
gc_info(&info);
|
|
printf("GC@%lu %lums\n", start, ticks);
|
|
printf(" %lu total\n", info.total);
|
|
printf(" %lu : %lu\n", info.used, info.free);
|
|
printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block);
|
|
}
|
|
|
|
py_obj_t pyb_gc(void) {
|
|
gc_collect();
|
|
return py_const_none;
|
|
}
|
|
|
|
// PWM
|
|
// TIM2 and TIM5 have CH1, CH2, CH3, CH4 on PA0-PA3 respectively
|
|
// they are both 32-bit counters
|
|
// 16-bit prescaler
|
|
// TIM2_CH3 also on PB10 (used below)
|
|
void servo_init(void) {
|
|
// TIM2 clock enable
|
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
|
|
|
|
// for PB10
|
|
/*
|
|
// GPIOB Configuration: TIM2_CH3 (PB10)
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
|
|
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
|
|
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
|
|
GPIO_Init(GPIOB, &GPIO_InitStructure);
|
|
|
|
// Connect TIM2 pins to AF1
|
|
GPIO_PinAFConfig(GPIOB, GPIO_PinSource10, GPIO_AF_TIM2);
|
|
*/
|
|
|
|
// for PA0, PA1, PA2, PA3
|
|
{
|
|
// GPIOA Configuration: TIM2_CH0, TIM2_CH1 (PA0, PA1)
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
|
|
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
|
|
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
|
|
GPIO_Init(GPIOA, &GPIO_InitStructure);
|
|
|
|
// Connect TIM2 pins to AF1
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource0, GPIO_AF_TIM2);
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource1, GPIO_AF_TIM2);
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_TIM2);
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_TIM2);
|
|
}
|
|
|
|
// Compute the prescaler value so TIM2 runs at 100kHz
|
|
uint16_t PrescalerValue = (uint16_t) ((SystemCoreClock / 2) / 100000) - 1;
|
|
|
|
// Time base configuration
|
|
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
|
|
TIM_TimeBaseStructure.TIM_Period = 2000; // timer cycles at 50Hz
|
|
TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
|
|
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
|
|
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
|
|
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
|
|
|
|
// PWM Mode configuration
|
|
TIM_OCInitTypeDef TIM_OCInitStructure;
|
|
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
|
|
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
|
|
TIM_OCInitStructure.TIM_Pulse = 150; // units of 10us
|
|
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
|
|
TIM_OC1Init(TIM2, &TIM_OCInitStructure); // channel 1
|
|
TIM_OC2Init(TIM2, &TIM_OCInitStructure); // channel 2
|
|
TIM_OC3Init(TIM2, &TIM_OCInitStructure); // channel 3
|
|
TIM_OC4Init(TIM2, &TIM_OCInitStructure); // channel 4
|
|
|
|
// ?
|
|
TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable); // channel 1
|
|
TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable); // channel 2
|
|
TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable); // channel 3
|
|
TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Enable); // channel 4
|
|
|
|
// ?
|
|
TIM_ARRPreloadConfig(TIM2, ENABLE);
|
|
|
|
// TIM2 enable counter
|
|
TIM_Cmd(TIM2, ENABLE);
|
|
}
|
|
|
|
py_obj_t pyb_servo_set(py_obj_t port, py_obj_t value) {
|
|
int p = py_obj_get_int(port);
|
|
int v = py_obj_get_int(value);
|
|
if (v < 100) { v = 100; }
|
|
if (v > 200) { v = 200; }
|
|
switch (p) {
|
|
case 1: TIM2->CCR1 = v; break;
|
|
case 2: TIM2->CCR2 = v; break;
|
|
case 3: TIM2->CCR3 = v; break;
|
|
case 4: TIM2->CCR4 = v; break;
|
|
}
|
|
return py_const_none;
|
|
}
|
|
|
|
py_obj_t pyb_pwm_set(py_obj_t period, py_obj_t pulse) {
|
|
int pe = py_obj_get_int(period);
|
|
int pu = py_obj_get_int(pulse);
|
|
TIM2->ARR = pe;
|
|
TIM2->CCR3 = pu;
|
|
return py_const_none;
|
|
}
|
|
|
|
#define MMA_ADDR (0x4c)
|
|
|
|
int mma_buf[12];
|
|
|
|
py_obj_t pyb_mma_read(void) {
|
|
for (int i = 0; i <= 6; i += 3) {
|
|
mma_buf[0 + i] = mma_buf[0 + i + 3];
|
|
mma_buf[1 + i] = mma_buf[1 + i + 3];
|
|
mma_buf[2 + i] = mma_buf[2 + i + 3];
|
|
}
|
|
|
|
mma_start(MMA_ADDR, 1);
|
|
mma_send_byte(0);
|
|
mma_restart(MMA_ADDR, 0);
|
|
for (int i = 0; i <= 2; i++) {
|
|
int v = mma_read_ack() & 0x3f;
|
|
if (v & 0x20) {
|
|
v |= ~0x1f;
|
|
}
|
|
mma_buf[9 + i] = v;
|
|
}
|
|
int jolt_info = mma_read_nack();
|
|
|
|
py_obj_t data[4];
|
|
data[0] = py_obj_new_int(jolt_info);
|
|
data[1] = py_obj_new_int(mma_buf[2] + mma_buf[5] + mma_buf[8] + mma_buf[11]);
|
|
data[2] = py_obj_new_int(mma_buf[1] + mma_buf[4] + mma_buf[7] + mma_buf[10]);
|
|
data[3] = py_obj_new_int(mma_buf[0] + mma_buf[3] + mma_buf[6] + mma_buf[9]);
|
|
|
|
return rt_build_tuple(4, data); // items in reverse order in data
|
|
}
|
|
|
|
py_obj_t pyb_hid_send_report(py_obj_t arg) {
|
|
py_obj_t *items = py_obj_get_array_fixed_n(arg, 4);
|
|
uint8_t data[4];
|
|
data[0] = py_obj_get_int(items[0]);
|
|
data[1] = py_obj_get_int(items[1]);
|
|
data[2] = py_obj_get_int(items[2]);
|
|
data[3] = py_obj_get_int(items[3]);
|
|
usb_hid_send_report(data);
|
|
return py_const_none;
|
|
}
|
|
|
|
static void rtc_init(void) {
|
|
/* Enable the PWR clock */
|
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
|
|
|
|
/* Allow access to RTC */
|
|
PWR_BackupAccessCmd(ENABLE);
|
|
|
|
/* Enable the LSE OSC */
|
|
RCC_LSEConfig(RCC_LSE_ON);
|
|
|
|
/* Wait till LSE is ready */
|
|
while(RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET) {
|
|
}
|
|
|
|
/* Select the RTC Clock Source */
|
|
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);
|
|
/* ck_spre(1Hz) = RTCCLK(LSE) /(uwAsynchPrediv + 1)*(uwSynchPrediv + 1)*/
|
|
uint32_t uwSynchPrediv = 0xFF;
|
|
uint32_t uwAsynchPrediv = 0x7F;
|
|
|
|
/* Enable the RTC Clock */
|
|
RCC_RTCCLKCmd(ENABLE);
|
|
|
|
/* Wait for RTC APB registers synchronisation */
|
|
RTC_WaitForSynchro();
|
|
|
|
/* Configure the RTC data register and RTC prescaler */
|
|
RTC_InitTypeDef RTC_InitStructure;
|
|
RTC_InitStructure.RTC_AsynchPrediv = uwAsynchPrediv;
|
|
RTC_InitStructure.RTC_SynchPrediv = uwSynchPrediv;
|
|
RTC_InitStructure.RTC_HourFormat = RTC_HourFormat_24;
|
|
RTC_Init(&RTC_InitStructure);
|
|
|
|
// Set the date (BCD)
|
|
RTC_DateTypeDef RTC_DateStructure;
|
|
RTC_DateStructure.RTC_Year = 0x13;
|
|
RTC_DateStructure.RTC_Month = RTC_Month_October;
|
|
RTC_DateStructure.RTC_Date = 0x26;
|
|
RTC_DateStructure.RTC_WeekDay = RTC_Weekday_Saturday;
|
|
RTC_SetDate(RTC_Format_BCD, &RTC_DateStructure);
|
|
|
|
// Set the time (BCD)
|
|
RTC_TimeTypeDef RTC_TimeStructure;
|
|
RTC_TimeStructure.RTC_H12 = RTC_H12_AM;
|
|
RTC_TimeStructure.RTC_Hours = 0x01;
|
|
RTC_TimeStructure.RTC_Minutes = 0x53;
|
|
RTC_TimeStructure.RTC_Seconds = 0x00;
|
|
RTC_SetTime(RTC_Format_BCD, &RTC_TimeStructure);
|
|
|
|
// Indicator for the RTC configuration
|
|
//RTC_WriteBackupRegister(RTC_BKP_DR0, 0x32F2);
|
|
}
|
|
|
|
py_obj_t pyb_rtc_read(void) {
|
|
RTC_TimeTypeDef RTC_TimeStructure;
|
|
RTC_GetTime(RTC_Format_BIN, &RTC_TimeStructure);
|
|
printf("%02d:%02d:%02d\n", RTC_TimeStructure.RTC_Hours, RTC_TimeStructure.RTC_Minutes, RTC_TimeStructure.RTC_Seconds);
|
|
return py_const_none;
|
|
}
|
|
|
|
void file_obj_print(py_obj_t o) {
|
|
FIL *fp;
|
|
py_user_get_data(o, (machine_uint_t*)&fp, NULL);
|
|
printf("<file %p>", fp);
|
|
}
|
|
|
|
py_obj_t file_obj_read(py_obj_t self, py_obj_t arg) {
|
|
FIL *fp;
|
|
py_user_get_data(self, (machine_uint_t*)&fp, NULL);
|
|
int n = py_obj_get_int(arg);
|
|
char *buf = m_new(char, n + 1);
|
|
UINT n_out;
|
|
f_read(fp, buf, n, &n_out);
|
|
buf[n_out] = 0;
|
|
return py_obj_new_str(qstr_from_str_take(buf));
|
|
}
|
|
|
|
py_obj_t file_obj_write(py_obj_t self, py_obj_t arg) {
|
|
FIL *fp;
|
|
py_user_get_data(self, (machine_uint_t*)&fp, NULL);
|
|
const char *s = qstr_str(py_obj_get_qstr(arg));
|
|
UINT n_out;
|
|
FRESULT res = f_write(fp, s, strlen(s), &n_out);
|
|
if (res != FR_OK) {
|
|
printf("File error: could not write to file; error code %d\n", res);
|
|
} else if (n_out != strlen(s)) {
|
|
printf("File error: could not write all data to file; wrote %d / %d bytes\n", n_out, strlen(s));
|
|
}
|
|
return py_const_none;
|
|
}
|
|
|
|
py_obj_t file_obj_close(py_obj_t self) {
|
|
FIL *fp;
|
|
py_user_get_data(self, (machine_uint_t*)&fp, NULL);
|
|
f_close(fp);
|
|
return py_const_none;
|
|
}
|
|
|
|
// TODO gc hook to close the file if not already closed
|
|
const py_user_info_t file_obj_info = {
|
|
"File",
|
|
file_obj_print,
|
|
{
|
|
{"read", 1, file_obj_read},
|
|
{"write", 1, file_obj_write},
|
|
{"close", 0, file_obj_close},
|
|
{NULL, 0, NULL},
|
|
}
|
|
};
|
|
|
|
py_obj_t pyb_io_open(py_obj_t o_filename, py_obj_t o_mode) {
|
|
const char *filename = qstr_str(py_obj_get_qstr(o_filename));
|
|
const char *mode = qstr_str(py_obj_get_qstr(o_mode));
|
|
FIL *fp = m_new(FIL, 1);
|
|
if (mode[0] == 'r') {
|
|
// open for reading
|
|
FRESULT res = f_open(fp, filename, FA_READ);
|
|
if (res != FR_OK) {
|
|
printf("FileNotFoundError: [Errno 2] No such file or directory: '%s'\n", filename);
|
|
return py_const_none;
|
|
}
|
|
} else if (mode[0] == 'w') {
|
|
// open for writing, truncate the file first
|
|
FRESULT res = f_open(fp, filename, FA_WRITE | FA_CREATE_ALWAYS);
|
|
if (res != FR_OK) {
|
|
printf("?FileError: could not create file: '%s'\n", filename);
|
|
return py_const_none;
|
|
}
|
|
} else {
|
|
printf("ValueError: invalid mode: '%s'\n", mode);
|
|
return py_const_none;
|
|
}
|
|
return py_obj_new_user(&file_obj_info, (machine_uint_t)fp, 0);
|
|
}
|
|
|
|
py_obj_t pyb_rng_get(void) {
|
|
return py_obj_new_int(RNG_GetRandomNumber() >> 16);
|
|
}
|
|
|
|
int main(void) {
|
|
// TODO disable JTAG
|
|
|
|
// update the SystemCoreClock variable
|
|
SystemCoreClockUpdate();
|
|
|
|
// set interrupt priority config to use all 4 bits for pre-empting
|
|
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);
|
|
|
|
// enable the CCM RAM and the GPIO's
|
|
RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN;
|
|
|
|
// configure SDIO pins to be high to start with (apparently makes it more robust)
|
|
{
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12;
|
|
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
|
|
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
|
|
GPIO_Init(GPIOC, &GPIO_InitStructure);
|
|
|
|
// Configure PD.02 CMD line
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
|
|
GPIO_Init(GPIOD, &GPIO_InitStructure);
|
|
}
|
|
|
|
// basic sub-system init
|
|
sys_tick_init();
|
|
led_init();
|
|
rtc_init();
|
|
|
|
// turn on LED to indicate bootup
|
|
led_state(PYB_LED_G1, 1);
|
|
|
|
// more sub-system init
|
|
sw_init();
|
|
storage_init();
|
|
|
|
//usart_init(); disabled while wi-fi is enabled
|
|
|
|
int first_soft_reset = true;
|
|
|
|
soft_reset:
|
|
|
|
// GC init
|
|
gc_init(&_heap_start, (void*)HEAP_END);
|
|
|
|
// Micro Python init
|
|
qstr_init();
|
|
rt_init();
|
|
|
|
// LCD init
|
|
//lcd_init(); disabled while servos on PA0 PA1
|
|
|
|
// servo
|
|
servo_init();
|
|
|
|
// audio
|
|
audio_init();
|
|
|
|
// timer
|
|
timer_init();
|
|
|
|
// RNG
|
|
{
|
|
RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE);
|
|
RNG_Cmd(ENABLE);
|
|
}
|
|
|
|
// add some functions to the python namespace
|
|
{
|
|
py_obj_t m = py_module_new();
|
|
rt_store_attr(m, qstr_from_str_static("info"), rt_make_function_0(pyb_info));
|
|
rt_store_attr(m, qstr_from_str_static("source_dir"), rt_make_function_1(pyb_source_dir));
|
|
rt_store_attr(m, qstr_from_str_static("main"), rt_make_function_1(pyb_main));
|
|
rt_store_attr(m, qstr_from_str_static("sync"), rt_make_function_0(pyb_sync));
|
|
rt_store_attr(m, qstr_from_str_static("gc"), rt_make_function_0(pyb_gc));
|
|
rt_store_attr(m, qstr_from_str_static("delay"), rt_make_function_1(pyb_delay));
|
|
rt_store_attr(m, qstr_from_str_static("led"), rt_make_function_1(pyb_led));
|
|
rt_store_attr(m, qstr_from_str_static("sw"), rt_make_function_0(pyb_sw));
|
|
rt_store_attr(m, qstr_from_str_static("servo"), rt_make_function_2(pyb_servo_set));
|
|
rt_store_attr(m, qstr_from_str_static("pwm"), rt_make_function_2(pyb_pwm_set));
|
|
rt_store_attr(m, qstr_from_str_static("mma"), rt_make_function_0(pyb_mma_read));
|
|
rt_store_attr(m, qstr_from_str_static("hid"), rt_make_function_1(pyb_hid_send_report));
|
|
rt_store_attr(m, qstr_from_str_static("time"), rt_make_function_0(pyb_rtc_read));
|
|
rt_store_attr(m, qstr_from_str_static("uout"), rt_make_function_1(pyb_usart_send));
|
|
rt_store_attr(m, qstr_from_str_static("uin"), rt_make_function_0(pyb_usart_receive));
|
|
rt_store_attr(m, qstr_from_str_static("ustat"), rt_make_function_0(pyb_usart_status));
|
|
rt_store_attr(m, qstr_from_str_static("rng"), rt_make_function_0(pyb_rng_get));
|
|
rt_store_attr(m, qstr_from_str_static("Led"), rt_make_function_1(pyb_Led));
|
|
rt_store_name(qstr_from_str_static("pyb"), m);
|
|
|
|
rt_store_name(qstr_from_str_static("open"), rt_make_function_2(pyb_io_open));
|
|
}
|
|
|
|
// print a message to the LCD
|
|
lcd_print_str(" micro py board\n");
|
|
|
|
// check if user switch held (initiates reset of filesystem)
|
|
bool reset_filesystem = false;
|
|
if (sw_get()) {
|
|
reset_filesystem = true;
|
|
for (int i = 0; i < 50; i++) {
|
|
if (!sw_get()) {
|
|
reset_filesystem = false;
|
|
break;
|
|
}
|
|
sys_tick_delay_ms(10);
|
|
}
|
|
}
|
|
|
|
// local filesystem init
|
|
{
|
|
// try to mount the flash
|
|
FRESULT res = f_mount(&fatfs0, "0:", 1);
|
|
if (!reset_filesystem && res == FR_OK) {
|
|
// mount sucessful
|
|
} else if (reset_filesystem || res == FR_NO_FILESYSTEM) {
|
|
// no filesystem, so create a fresh one
|
|
// TODO doesn't seem to work correctly when reset_filesystem is true...
|
|
|
|
// LED on to indicate creation of LFS
|
|
led_state(PYB_LED_R2, 1);
|
|
uint32_t stc = sys_tick_counter;
|
|
|
|
res = f_mkfs("0:", 0, 0);
|
|
if (res == FR_OK) {
|
|
// success creating fresh LFS
|
|
} else {
|
|
__fatal_error("could not create LFS");
|
|
}
|
|
|
|
// keep LED on for at least 200ms
|
|
sys_tick_wait_at_least(stc, 200);
|
|
led_state(PYB_LED_R2, 0);
|
|
} else {
|
|
__fatal_error("could not access LFS");
|
|
}
|
|
}
|
|
|
|
// make sure we have a /boot.py
|
|
{
|
|
FILINFO fno;
|
|
FRESULT res = f_stat("0:/boot.py", &fno);
|
|
if (res == FR_OK) {
|
|
if (fno.fattrib & AM_DIR) {
|
|
// exists as a directory
|
|
// TODO handle this case
|
|
// see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
|
|
} else {
|
|
// exists as a file, good!
|
|
}
|
|
} else {
|
|
// doesn't exist, create fresh file
|
|
|
|
// LED on to indicate creation of boot.py
|
|
led_state(PYB_LED_R2, 1);
|
|
uint32_t stc = sys_tick_counter;
|
|
|
|
FIL fp;
|
|
f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
|
|
UINT n;
|
|
f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
|
|
// TODO check we could write n bytes
|
|
f_close(&fp);
|
|
|
|
// keep LED on for at least 200ms
|
|
sys_tick_wait_at_least(stc, 200);
|
|
led_state(PYB_LED_R2, 0);
|
|
}
|
|
}
|
|
|
|
// run /boot.py
|
|
if (!do_file("0:/boot.py")) {
|
|
flash_error(4);
|
|
}
|
|
|
|
// USB
|
|
usb_init();
|
|
|
|
// MMA
|
|
if (first_soft_reset) {
|
|
// init and reset address to zero
|
|
mma_init();
|
|
mma_start(MMA_ADDR, 1);
|
|
mma_send_byte(0);
|
|
mma_stop();
|
|
|
|
/*
|
|
// read and print all 11 registers
|
|
mma_start(MMA_ADDR, 1);
|
|
mma_send_byte(0);
|
|
mma_restart(MMA_ADDR, 0);
|
|
for (int i = 0; i <= 0xa; i++) {
|
|
int data;
|
|
if (i == 0xa) {
|
|
data = mma_read_nack();
|
|
} else {
|
|
data = mma_read_ack();
|
|
}
|
|
printf(" %02x", data);
|
|
}
|
|
printf("\n");
|
|
*/
|
|
|
|
// put into active mode
|
|
mma_start(MMA_ADDR, 1);
|
|
mma_send_byte(7); // mode
|
|
mma_send_byte(1); // active mode
|
|
mma_stop();
|
|
|
|
/*
|
|
// infinite loop to read values
|
|
for (;;) {
|
|
sys_tick_delay_ms(500);
|
|
|
|
mma_start(MMA_ADDR, 1);
|
|
mma_send_byte(0);
|
|
mma_restart(MMA_ADDR, 0);
|
|
for (int i = 0; i <= 3; i++) {
|
|
int data;
|
|
if (i == 3) {
|
|
data = mma_read_nack();
|
|
printf(" %02x\n", data);
|
|
} else {
|
|
data = mma_read_ack() & 0x3f;
|
|
if (data & 0x20) {
|
|
data |= ~0x1f;
|
|
}
|
|
printf(" % 2d", data);
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
}
|
|
|
|
// turn boot-up LED off
|
|
led_state(PYB_LED_G1, 0);
|
|
|
|
// run main script
|
|
{
|
|
vstr_t *vstr = vstr_new();
|
|
vstr_add_str(vstr, "0:/");
|
|
if (pyb_config_source_dir == 0) {
|
|
vstr_add_str(vstr, "src");
|
|
} else {
|
|
vstr_add_str(vstr, qstr_str(pyb_config_source_dir));
|
|
}
|
|
vstr_add_char(vstr, '/');
|
|
if (pyb_config_main == 0) {
|
|
vstr_add_str(vstr, "main.py");
|
|
} else {
|
|
vstr_add_str(vstr, qstr_str(pyb_config_main));
|
|
}
|
|
if (!do_file(vstr_str(vstr))) {
|
|
flash_error(3);
|
|
}
|
|
vstr_free(vstr);
|
|
}
|
|
|
|
//printf("init;al=%u\n", m_get_total_bytes_allocated()); // 1600, due to qstr_init
|
|
//sys_tick_delay_ms(1000);
|
|
|
|
// Python!
|
|
if (0) {
|
|
//const char *pysrc = "def f():\n x=x+1\nprint(42)\n";
|
|
const char *pysrc =
|
|
// impl01.py
|
|
/*
|
|
"x = 0\n"
|
|
"while x < 400:\n"
|
|
" y = 0\n"
|
|
" while y < 400:\n"
|
|
" z = 0\n"
|
|
" while z < 400:\n"
|
|
" z = z + 1\n"
|
|
" y = y + 1\n"
|
|
" x = x + 1\n";
|
|
*/
|
|
// impl02.py
|
|
/*
|
|
"#@micropython.native\n"
|
|
"def f():\n"
|
|
" x = 0\n"
|
|
" while x < 400:\n"
|
|
" y = 0\n"
|
|
" while y < 400:\n"
|
|
" z = 0\n"
|
|
" while z < 400:\n"
|
|
" z = z + 1\n"
|
|
" y = y + 1\n"
|
|
" x = x + 1\n"
|
|
"f()\n";
|
|
*/
|
|
/*
|
|
"print('in python!')\n"
|
|
"x = 0\n"
|
|
"while x < 4:\n"
|
|
" pyb_led(True)\n"
|
|
" pyb_delay(201)\n"
|
|
" pyb_led(False)\n"
|
|
" pyb_delay(201)\n"
|
|
" x += 1\n"
|
|
"print('press me!')\n"
|
|
"while True:\n"
|
|
" pyb_led(pyb_sw())\n";
|
|
*/
|
|
/*
|
|
// impl16.py
|
|
"@micropython.asm_thumb\n"
|
|
"def delay(r0):\n"
|
|
" b(loop_entry)\n"
|
|
" label(loop1)\n"
|
|
" movw(r1, 55999)\n"
|
|
" label(loop2)\n"
|
|
" subs(r1, r1, 1)\n"
|
|
" cmp(r1, 0)\n"
|
|
" bgt(loop2)\n"
|
|
" subs(r0, r0, 1)\n"
|
|
" label(loop_entry)\n"
|
|
" cmp(r0, 0)\n"
|
|
" bgt(loop1)\n"
|
|
"print('in python!')\n"
|
|
"@micropython.native\n"
|
|
"def flash(n):\n"
|
|
" x = 0\n"
|
|
" while x < n:\n"
|
|
" pyb_led(True)\n"
|
|
" delay(249)\n"
|
|
" pyb_led(False)\n"
|
|
" delay(249)\n"
|
|
" x = x + 1\n"
|
|
"flash(20)\n";
|
|
*/
|
|
// impl18.py
|
|
/*
|
|
"# basic exceptions\n"
|
|
"x = 1\n"
|
|
"try:\n"
|
|
" x.a()\n"
|
|
"except:\n"
|
|
" print(x)\n";
|
|
*/
|
|
// impl19.py
|
|
"# for loop\n"
|
|
"def f():\n"
|
|
" for x in range(400):\n"
|
|
" for y in range(400):\n"
|
|
" for z in range(400):\n"
|
|
" pass\n"
|
|
"f()\n";
|
|
|
|
py_lexer_str_buf_t py_lexer_str_buf;
|
|
py_lexer_t *lex = py_lexer_new_from_str_len("<stdin>", pysrc, strlen(pysrc), false, &py_lexer_str_buf);
|
|
|
|
// nalloc=1740;6340;6836 -> 140;4600;496 bytes for lexer, parser, compiler
|
|
printf("lex; al=%u\n", m_get_total_bytes_allocated());
|
|
sys_tick_delay_ms(1000);
|
|
py_parse_node_t pn = py_parse(lex, PY_PARSE_FILE_INPUT);
|
|
py_lexer_free(lex);
|
|
if (pn != PY_PARSE_NODE_NULL) {
|
|
printf("pars;al=%u\n", m_get_total_bytes_allocated());
|
|
sys_tick_delay_ms(1000);
|
|
//parse_node_show(pn, 0);
|
|
bool comp_ok = py_compile(pn, false);
|
|
printf("comp;al=%u\n", m_get_total_bytes_allocated());
|
|
sys_tick_delay_ms(1000);
|
|
|
|
if (!comp_ok) {
|
|
printf("compile error\n");
|
|
} else {
|
|
// execute it!
|
|
|
|
py_obj_t module_fun = rt_make_function_from_id(1);
|
|
|
|
// flash once
|
|
led_state(PYB_LED_G1, 1);
|
|
sys_tick_delay_ms(100);
|
|
led_state(PYB_LED_G1, 0);
|
|
|
|
nlr_buf_t nlr;
|
|
if (nlr_push(&nlr) == 0) {
|
|
py_obj_t ret = rt_call_function_0(module_fun);
|
|
printf("done! got: ");
|
|
py_obj_print(ret);
|
|
printf("\n");
|
|
nlr_pop();
|
|
} else {
|
|
// uncaught exception
|
|
printf("exception: ");
|
|
py_obj_print((py_obj_t)nlr.ret_val);
|
|
printf("\n");
|
|
}
|
|
|
|
// flash once
|
|
led_state(PYB_LED_G1, 1);
|
|
sys_tick_delay_ms(100);
|
|
led_state(PYB_LED_G1, 0);
|
|
|
|
sys_tick_delay_ms(1000);
|
|
printf("nalloc=%u\n", m_get_total_bytes_allocated());
|
|
sys_tick_delay_ms(1000);
|
|
}
|
|
}
|
|
}
|
|
|
|
// HID example
|
|
if (0) {
|
|
uint8_t data[4];
|
|
data[0] = 0;
|
|
data[1] = 1;
|
|
data[2] = -2;
|
|
data[3] = 0;
|
|
for (;;) {
|
|
if (sw_get()) {
|
|
data[0] = 0x01; // 0x04 is middle, 0x02 is right
|
|
} else {
|
|
data[0] = 0x00;
|
|
}
|
|
mma_start(MMA_ADDR, 1);
|
|
mma_send_byte(0);
|
|
mma_restart(MMA_ADDR, 0);
|
|
for (int i = 0; i <= 1; i++) {
|
|
int v = mma_read_ack() & 0x3f;
|
|
if (v & 0x20) {
|
|
v |= ~0x1f;
|
|
}
|
|
data[1 + i] = v;
|
|
}
|
|
mma_read_nack();
|
|
usb_hid_send_report(data);
|
|
sys_tick_delay_ms(15);
|
|
}
|
|
}
|
|
|
|
// wifi
|
|
//pyb_wlan_init();
|
|
//pyb_wlan_start();
|
|
|
|
do_repl();
|
|
|
|
// benchmark C version of impl02.py
|
|
if (0) {
|
|
led_state(PYB_LED_G1, 1);
|
|
sys_tick_delay_ms(100);
|
|
led_state(PYB_LED_G1, 0);
|
|
impl02_c_version();
|
|
led_state(PYB_LED_G1, 1);
|
|
sys_tick_delay_ms(100);
|
|
led_state(PYB_LED_G1, 0);
|
|
}
|
|
|
|
// SD card testing
|
|
if (1) {
|
|
extern void sdio_init(void);
|
|
//sdio_init();
|
|
}
|
|
|
|
printf("PYB: sync filesystems\n");
|
|
pyb_sync();
|
|
|
|
printf("PYB: soft reboot\n");
|
|
|
|
first_soft_reset = false;
|
|
goto soft_reset;
|
|
}
|
|
|
|
double __aeabi_f2d(float x) {
|
|
// TODO
|
|
return 0.0;
|
|
}
|
|
|
|
float __aeabi_d2f(double x) {
|
|
// TODO
|
|
return 0.0;
|
|
}
|
|
|
|
double sqrt(double x) {
|
|
// TODO
|
|
return 0.0;
|
|
}
|
|
|
|
machine_float_t machine_sqrt(machine_float_t x) {
|
|
// TODO
|
|
return x;
|
|
}
|