circuitpython/ports/stm32/mboot/main.c
Damien George 9a0bca2c2a stm32/mboot: Make LEDs and reset-mode selection more configurable.
A board can now customise mboot with:
- MBOOT_LED1, MBOOT_LED2, MBOOT_LED3, MBOOT_LED4: if it needs to have
  different LEDs for mboot compared to the application
- MBOOT_BOARD_LED_INIT: if it needs a fully customised LED init function
- MBOOT_BOARD_LED_STATE: if it needs a fully customised LED state-setting
  function
- MBOOT_BOARD_GET_RESET_MODE: if it needs a fully customised function to
  get the reset mode

With full customisation, the only requirement is a single LED to show the
status of the bootloader (idle, erasing, flashing, etc), which can be
configured to do nothing if needed.

Signed-off-by: Damien George <damien@micropython.org>
2021-05-12 13:44:57 +10:00

1667 lines
52 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017-2019 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/mphal.h"
#include "extmod/crypto-algorithms/sha256.c"
#include "boardctrl.h"
#include "usbd_core.h"
#include "storage.h"
#include "flash.h"
#include "i2cslave.h"
#include "irq.h"
#include "mboot.h"
#include "powerctrl.h"
#include "dfu.h"
#include "pack.h"
// Whether the bootloader will leave via reset, or direct jump to the application.
#ifndef MBOOT_LEAVE_BOOTLOADER_VIA_RESET
#define MBOOT_LEAVE_BOOTLOADER_VIA_RESET (1)
#endif
// This option selects whether to use explicit polling or IRQs for USB events.
// In some test cases polling mode can run slightly faster, but it uses more power.
// Polling mode will also cause failures with the mass-erase command because USB
// events will not be serviced for the duration of the mass erase.
// With STM32WB MCUs only non-polling/IRQ mode is supported.
#define USE_USB_POLLING (0)
// Using cache probably won't make it faster because we run at a low frequency, and best
// to keep the MCU config as minimal as possible.
#define USE_CACHE (0)
// IRQ priorities (encoded values suitable for NVIC_SetPriority)
// Most values are defined in irq.h.
#define IRQ_PRI_I2C (NVIC_EncodePriority(NVIC_PRIORITYGROUP_4, 1, 0))
// Configure PLL to give the desired CPU freq
#undef MICROPY_HW_FLASH_LATENCY
#if defined(STM32F4) || defined(STM32F7)
#if MBOOT_ENABLE_PACKING
// With encryption/signing/compression, a faster CPU makes processing much faster.
#define CORE_PLL_FREQ (96000000)
#define MICROPY_HW_FLASH_LATENCY FLASH_LATENCY_3
#else
#define CORE_PLL_FREQ (48000000)
#define MICROPY_HW_FLASH_LATENCY FLASH_LATENCY_1
#endif
#elif defined(STM32H7)
#define CORE_PLL_FREQ (96000000)
#define MICROPY_HW_FLASH_LATENCY FLASH_LATENCY_2
#endif
#undef MICROPY_HW_CLK_PLLM
#undef MICROPY_HW_CLK_PLLN
#undef MICROPY_HW_CLK_PLLP
#undef MICROPY_HW_CLK_PLLQ
#undef MICROPY_HW_CLK_PLLR
#define MICROPY_HW_CLK_PLLM (HSE_VALUE / 1000000)
#define MICROPY_HW_CLK_PLLN (192)
#define MICROPY_HW_CLK_PLLP (MICROPY_HW_CLK_PLLN / (CORE_PLL_FREQ / 1000000))
#define MICROPY_HW_CLK_PLLQ (4)
#define MICROPY_HW_CLK_PLLR (2)
// Work out which USB device to use for the USB DFU interface
#if !defined(MICROPY_HW_USB_MAIN_DEV)
#if MICROPY_HW_USB_FS
#define MICROPY_HW_USB_MAIN_DEV (USB_PHY_FS_ID)
#elif MICROPY_HW_USB_HS
#define MICROPY_HW_USB_MAIN_DEV (USB_PHY_HS_ID)
#else
#error Unable to determine proper MICROPY_HW_USB_MAIN_DEV to use
#endif
#endif
// These bits are used to detect valid application firmware at APPLICATION_ADDR
#define APP_VALIDITY_BITS (0x00000003)
// For 1ms system ticker.
static volatile uint32_t systick_ms;
// Global dfu state
dfu_context_t dfu_context SECTION_NOZERO_BSS;
static void do_reset(void);
uint32_t get_le32(const uint8_t *b) {
return b[0] | b[1] << 8 | b[2] << 16 | b[3] << 24;
}
mp_uint_t mp_hal_ticks_ms(void) {
return systick_ms;
}
void mp_hal_delay_us(mp_uint_t usec) {
// use a busy loop for the delay
// sys freq is always a multiple of 2MHz, so division here won't lose precision
#if defined(CORE_PLL_FREQ)
const uint32_t ucount = CORE_PLL_FREQ / 2000000 * usec / 2;
#else
const uint32_t ucount = SystemCoreClock / 2000000 * usec / 2;
#endif
for (uint32_t count = 0; ++count <= ucount;) {
__NOP();
}
}
void mp_hal_delay_ms(mp_uint_t ms) {
if (__get_PRIMASK() == 0) {
// IRQs enabled, use systick
if (ms != 0 && ms != (mp_uint_t)-1) {
++ms; // account for the fact that systick_ms may roll over immediately
}
uint32_t start = systick_ms;
while (systick_ms - start < ms) {
__WFI();
}
} else {
// IRQs disabled, so need to use a busy loop for the delay.
// To prevent possible overflow of the counter we use a double loop.
const uint32_t count_1ms = 16000000 / 8000;
for (uint32_t i = 0; i < ms; i++) {
for (volatile uint32_t count = 0; ++count <= count_1ms;) {
}
}
}
}
// Needed by parts of the HAL
uint32_t HAL_GetTick(void) {
return systick_ms;
}
// Needed by parts of the HAL
void HAL_Delay(uint32_t ms) {
mp_hal_delay_ms(ms);
}
NORETURN static void __fatal_error(const char *msg) {
NVIC_SystemReset();
for (;;) {
}
}
/******************************************************************************/
// CLOCK
void systick_init(void) {
// Configure SysTick as 1ms ticker
SysTick_Config(SystemCoreClock / 1000);
NVIC_SetPriority(SysTick_IRQn, IRQ_PRI_SYSTICK);
}
#if defined(STM32F4) || defined(STM32F7)
void SystemClock_Config(void) {
// This function assumes that HSI is used as the system clock (see RCC->CFGR, SWS bits)
// Enable Power Control clock
__HAL_RCC_PWR_CLK_ENABLE();
// Reduce power consumption
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
// Turn HSE on
__HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) {
}
// Disable PLL
__HAL_RCC_PLL_DISABLE();
while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) {
}
// Configure PLL factors and source
RCC->PLLCFGR =
1 << RCC_PLLCFGR_PLLSRC_Pos // HSE selected as PLL source
| MICROPY_HW_CLK_PLLM << RCC_PLLCFGR_PLLM_Pos
| MICROPY_HW_CLK_PLLN << RCC_PLLCFGR_PLLN_Pos
| ((MICROPY_HW_CLK_PLLP >> 1) - 1) << RCC_PLLCFGR_PLLP_Pos
| MICROPY_HW_CLK_PLLQ << RCC_PLLCFGR_PLLQ_Pos
#ifdef RCC_PLLCFGR_PLLR
| 2 << RCC_PLLCFGR_PLLR_Pos // default PLLR value of 2
#endif
;
// Enable PLL
__HAL_RCC_PLL_ENABLE();
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) {
}
// Increase latency before changing clock
if (MICROPY_HW_FLASH_LATENCY > (FLASH->ACR & FLASH_ACR_LATENCY)) {
__HAL_FLASH_SET_LATENCY(MICROPY_HW_FLASH_LATENCY);
}
// Configure AHB divider
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV1);
// Configure SYSCLK source from PLL
__HAL_RCC_SYSCLK_CONFIG(RCC_SYSCLKSOURCE_PLLCLK);
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) {
}
// Decrease latency after changing clock
if (MICROPY_HW_FLASH_LATENCY < (FLASH->ACR & FLASH_ACR_LATENCY)) {
__HAL_FLASH_SET_LATENCY(MICROPY_HW_FLASH_LATENCY);
}
// Set APB clock dividers
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_HCLK_DIV4);
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, RCC_HCLK_DIV2 << 3);
// Update clock value and reconfigure systick now that the frequency changed
SystemCoreClock = CORE_PLL_FREQ;
systick_init();
#if defined(STM32F7)
// The DFU bootloader changes the clocksource register from its default power
// on reset value, so we set it back here, so the clocksources are the same
// whether we were started from DFU or from a power on reset.
RCC->DCKCFGR2 = 0;
#endif
}
#elif defined(STM32H7)
void SystemClock_Config(void) {
// This function assumes that HSI is used as the system clock (see RCC->CFGR, SWS bits)
// Select VOS level as high voltage to give reliable operation
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
while (__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY) == RESET) {
}
// Turn HSE on
__HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) {
}
// Disable PLL1
__HAL_RCC_PLL_DISABLE();
while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) {
}
// Configure PLL1 factors and source
RCC->PLLCKSELR =
MICROPY_HW_CLK_PLLM << RCC_PLLCKSELR_DIVM1_Pos
| 2 << RCC_PLLCKSELR_PLLSRC_Pos; // HSE selected as PLL source
RCC->PLL1DIVR =
(MICROPY_HW_CLK_PLLN - 1) << RCC_PLL1DIVR_N1_Pos
| (MICROPY_HW_CLK_PLLP - 1) << RCC_PLL1DIVR_P1_Pos // only even P allowed
| (MICROPY_HW_CLK_PLLQ - 1) << RCC_PLL1DIVR_Q1_Pos
| (MICROPY_HW_CLK_PLLR - 1) << RCC_PLL1DIVR_R1_Pos;
// Enable PLL1 outputs for SYSCLK and USB
RCC->PLLCFGR = RCC_PLLCFGR_DIVP1EN | RCC_PLLCFGR_DIVQ1EN;
// Select PLL1-Q for USB clock source
RCC->D2CCIP2R |= 1 << RCC_D2CCIP2R_USBSEL_Pos;
// Enable PLL1
__HAL_RCC_PLL_ENABLE();
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) {
}
// Increase latency before changing SYSCLK
if (MICROPY_HW_FLASH_LATENCY > (FLASH->ACR & FLASH_ACR_LATENCY)) {
__HAL_FLASH_SET_LATENCY(MICROPY_HW_FLASH_LATENCY);
}
// Configure AHB divider
RCC->D1CFGR =
0 << RCC_D1CFGR_D1CPRE_Pos // SYSCLK prescaler of 1
| 8 << RCC_D1CFGR_HPRE_Pos // AHB prescaler of 2
;
// Configure SYSCLK source from PLL
__HAL_RCC_SYSCLK_CONFIG(RCC_SYSCLKSOURCE_PLLCLK);
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL1) {
}
// Decrease latency after changing clock
if (MICROPY_HW_FLASH_LATENCY < (FLASH->ACR & FLASH_ACR_LATENCY)) {
__HAL_FLASH_SET_LATENCY(MICROPY_HW_FLASH_LATENCY);
}
// Set APB clock dividers
RCC->D1CFGR |=
4 << RCC_D1CFGR_D1PPRE_Pos // APB3 prescaler of 2
;
RCC->D2CFGR =
4 << RCC_D2CFGR_D2PPRE2_Pos // APB2 prescaler of 2
| 4 << RCC_D2CFGR_D2PPRE1_Pos // APB1 prescaler of 2
;
RCC->D3CFGR =
4 << RCC_D3CFGR_D3PPRE_Pos // APB4 prescaler of 2
;
// Update clock value and reconfigure systick now that the frequency changed
SystemCoreClock = CORE_PLL_FREQ;
systick_init();
}
#endif
// Needed by HAL_PCD_IRQHandler
uint32_t HAL_RCC_GetHCLKFreq(void) {
return SystemCoreClock;
}
/******************************************************************************/
// GPIO
#if defined(STM32F4) || defined(STM32F7)
#define AHBxENR AHB1ENR
#define AHBxENR_GPIOAEN_Pos RCC_AHB1ENR_GPIOAEN_Pos
#elif defined(STM32H7)
#define AHBxENR AHB4ENR
#define AHBxENR_GPIOAEN_Pos RCC_AHB4ENR_GPIOAEN_Pos
#elif defined(STM32WB)
#define AHBxENR AHB2ENR
#define AHBxENR_GPIOAEN_Pos RCC_AHB2ENR_GPIOAEN_Pos
#endif
void mp_hal_pin_config(mp_hal_pin_obj_t port_pin, uint32_t mode, uint32_t pull, uint32_t alt) {
GPIO_TypeDef *gpio = (GPIO_TypeDef*)(port_pin & ~0xf);
// Enable the GPIO peripheral clock
uint32_t gpio_idx = ((uintptr_t)gpio - GPIOA_BASE) / (GPIOB_BASE - GPIOA_BASE);
RCC->AHBxENR |= 1 << (AHBxENR_GPIOAEN_Pos + gpio_idx);
volatile uint32_t tmp = RCC->AHBxENR; // Delay after enabling clock
(void)tmp;
// Configure the pin
uint32_t pin = port_pin & 0xf;
gpio->MODER = (gpio->MODER & ~(3 << (2 * pin))) | ((mode & 3) << (2 * pin));
gpio->OTYPER = (gpio->OTYPER & ~(1 << pin)) | ((mode >> 2) << pin);
gpio->OSPEEDR = (gpio->OSPEEDR & ~(3 << (2 * pin))) | (2 << (2 * pin)); // full speed
gpio->PUPDR = (gpio->PUPDR & ~(3 << (2 * pin))) | (pull << (2 * pin));
gpio->AFR[pin >> 3] = (gpio->AFR[pin >> 3] & ~(15 << (4 * (pin & 7)))) | (alt << (4 * (pin & 7)));
}
void mp_hal_pin_config_speed(uint32_t port_pin, uint32_t speed) {
GPIO_TypeDef *gpio = (GPIO_TypeDef*)(port_pin & ~0xf);
uint32_t pin = port_pin & 0xf;
gpio->OSPEEDR = (gpio->OSPEEDR & ~(3 << (2 * pin))) | (speed << (2 * pin));
}
/******************************************************************************/
// LED
#if defined(MBOOT_LED1)
#define LED0 MBOOT_LED1
#elif defined(MICROPY_HW_LED1)
#define LED0 MICROPY_HW_LED1
#endif
#if defined(MBOOT_LED2)
#define LED1 MBOOT_LED2
#elif defined(MICROPY_HW_LED2)
#define LED1 MICROPY_HW_LED2
#endif
#if defined(MBOOT_LED3)
#define LED2 MBOOT_LED3
#elif defined(MICROPY_HW_LED3)
#define LED2 MICROPY_HW_LED3
#endif
#if defined(MBOOT_LED4)
#define LED3 MBOOT_LED4
#elif defined(MICROPY_HW_LED4)
#define LED3 MICROPY_HW_LED4
#endif
// For flashing states: bit 0 is "active", bit 1 is "inactive", bits 2-6 are flash rate.
typedef enum {
LED0_STATE_OFF = 0,
LED0_STATE_ON = 1,
LED0_STATE_SLOW_FLASH = (20 << 2) | 1,
LED0_STATE_FAST_FLASH = (2 << 2) | 1,
LED0_STATE_SLOW_INVERTED_FLASH = (20 << 2) | 2,
} led0_state_t;
static led0_state_t led0_cur_state = LED0_STATE_OFF;
static uint32_t led0_ms_interval = 0;
static int led0_toggle_count = 0;
MP_WEAK void led_init(void) {
#if defined(MBOOT_BOARD_LED_INIT)
// Custom LED init function provided by the board.
MBOOT_BOARD_LED_INIT();
#else
// Init LEDs using GPIO calls.
mp_hal_pin_output(LED0);
#ifdef LED1
mp_hal_pin_output(LED1);
#endif
#ifdef LED2
mp_hal_pin_output(LED2);
#endif
#ifdef LED3
mp_hal_pin_output(LED3);
#endif
#endif
led0_cur_state = LED0_STATE_OFF;
}
MP_WEAK void led_state(uint32_t led, int val) {
#if defined(MBOOT_BOARD_LED_STATE)
// Custom LED state function provided by the board.
return MBOOT_BOARD_LED_STATE(led, val);
#else
// Set LEDs using GPIO calls.
if (val) {
MICROPY_HW_LED_ON(led);
} else {
MICROPY_HW_LED_OFF(led);
}
#endif
}
void led_state_all(unsigned int mask) {
led_state(LED0, mask & 1);
#ifdef LED1
led_state(LED1, mask & 2);
#endif
#ifdef LED2
led_state(LED2, mask & 4);
#endif
#ifdef LED3
led_state(LED3, mask & 8);
#endif
}
void led0_state(led0_state_t state) {
led0_cur_state = state;
if (state == LED0_STATE_OFF || state == LED0_STATE_ON) {
led_state(LED0, state);
}
}
void led0_update() {
if (led0_cur_state != LED0_STATE_OFF && systick_ms - led0_ms_interval > 50) {
uint8_t rate = (led0_cur_state >> 2) & 0x1f;
led0_ms_interval += 50;
if (++led0_toggle_count >= rate) {
led0_toggle_count = 0;
}
led_state(LED0, (led0_cur_state & (led0_toggle_count == 0 ? 1 : 2)));
}
}
/******************************************************************************/
// FLASH
#if defined(STM32WB)
#define FLASH_END FLASH_END_ADDR
#endif
#define APPLICATION_FLASH_LENGTH (FLASH_END + 1 - APPLICATION_ADDR)
#ifndef MBOOT_SPIFLASH_LAYOUT
#define MBOOT_SPIFLASH_LAYOUT ""
#endif
#ifndef MBOOT_SPIFLASH2_LAYOUT
#define MBOOT_SPIFLASH2_LAYOUT ""
#endif
#if defined(STM32F4) \
|| defined(STM32F722xx) \
|| defined(STM32F723xx) \
|| defined(STM32F732xx) \
|| defined(STM32F733xx)
#define FLASH_LAYOUT_STR "@Internal Flash /0x08000000/04*016Kg,01*064Kg,07*128Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT
#elif defined(STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx)
#define FLASH_LAYOUT_STR "@Internal Flash /0x08000000/04*032Kg,01*128Kg,07*256Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT
#elif defined(STM32H743xx)
#define FLASH_LAYOUT_STR "@Internal Flash /0x08000000/16*128Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT
#elif defined(STM32WB)
#define FLASH_LAYOUT_STR "@Internal Flash /0x08000000/256*04Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT
#endif
static int mboot_flash_mass_erase(void) {
// Erase all flash pages after mboot.
int ret = flash_erase(APPLICATION_ADDR, APPLICATION_FLASH_LENGTH / sizeof(uint32_t));
return ret;
}
static int mboot_flash_page_erase(uint32_t addr, uint32_t *next_addr) {
uint32_t sector_size = 0;
uint32_t sector_start = 0;
int32_t sector = flash_get_sector_info(addr, &sector_start, &sector_size);
if (sector <= 0) {
// Don't allow to erase the sector with this bootloader in it, or invalid sectors
dfu_context.status = DFU_STATUS_ERROR_ADDRESS;
dfu_context.error = (sector == 0) ? MBOOT_ERROR_STR_OVERWRITE_BOOTLOADER_IDX
: MBOOT_ERROR_STR_INVALID_ADDRESS_IDX;
return -MBOOT_ERRNO_FLASH_ERASE_DISALLOWED;
}
*next_addr = sector_start + sector_size;
// Erase the flash page.
int ret = flash_erase(sector_start, sector_size / sizeof(uint32_t));
if (ret != 0) {
return ret;
}
// Check the erase set bits to 1, at least for the first 256 bytes
for (int i = 0; i < 64; ++i) {
if (((volatile uint32_t*)sector_start)[i] != 0xffffffff) {
return -MBOOT_ERRNO_FLASH_ERASE_FAILED;
}
}
return 0;
}
static int mboot_flash_write(uint32_t addr, const uint8_t *src8, size_t len) {
int32_t sector = flash_get_sector_info(addr, NULL, NULL);
if (sector <= 0) {
// Don't allow to write the sector with this bootloader in it
dfu_context.status = DFU_STATUS_ERROR_ADDRESS;
dfu_context.error = (sector == 0) ? MBOOT_ERROR_STR_OVERWRITE_BOOTLOADER_IDX
: MBOOT_ERROR_STR_INVALID_ADDRESS_IDX;
return -MBOOT_ERRNO_FLASH_WRITE_DISALLOWED;
}
const uint32_t *src = (const uint32_t*)src8;
size_t num_word32 = (len + 3) / 4;
// Write the data to flash.
int ret = flash_write(addr, src, num_word32);
if (ret != 0) {
return ret;
}
// TODO verify data
return 0;
}
/******************************************************************************/
// Writable address space interface
static int do_mass_erase(void) {
// TODO spiflash erase ?
return mboot_flash_mass_erase();
}
#if defined(MBOOT_SPIFLASH_ADDR) || defined(MBOOT_SPIFLASH2_ADDR)
static int spiflash_page_erase(mp_spiflash_t *spif, uint32_t addr, uint32_t n_blocks) {
for (int i = 0; i < n_blocks; ++i) {
int ret = mp_spiflash_erase_block(spif, addr);
if (ret != 0) {
return ret;
}
addr += MP_SPIFLASH_ERASE_BLOCK_SIZE;
}
return 0;
}
#endif
int hw_page_erase(uint32_t addr, uint32_t *next_addr) {
int ret = -1;
led0_state(LED0_STATE_ON);
#if defined(MBOOT_SPIFLASH_ADDR)
if (MBOOT_SPIFLASH_ADDR <= addr && addr < MBOOT_SPIFLASH_ADDR + MBOOT_SPIFLASH_BYTE_SIZE) {
*next_addr = addr + MBOOT_SPIFLASH_ERASE_BLOCKS_PER_PAGE * MP_SPIFLASH_ERASE_BLOCK_SIZE;
ret = spiflash_page_erase(MBOOT_SPIFLASH_SPIFLASH,
addr - MBOOT_SPIFLASH_ADDR, MBOOT_SPIFLASH_ERASE_BLOCKS_PER_PAGE);
} else
#endif
#if defined(MBOOT_SPIFLASH2_ADDR)
if (MBOOT_SPIFLASH2_ADDR <= addr && addr < MBOOT_SPIFLASH2_ADDR + MBOOT_SPIFLASH2_BYTE_SIZE) {
*next_addr = addr + MBOOT_SPIFLASH2_ERASE_BLOCKS_PER_PAGE * MP_SPIFLASH_ERASE_BLOCK_SIZE;
ret = spiflash_page_erase(MBOOT_SPIFLASH2_SPIFLASH,
addr - MBOOT_SPIFLASH2_ADDR, MBOOT_SPIFLASH2_ERASE_BLOCKS_PER_PAGE);
} else
#endif
{
ret = mboot_flash_page_erase(addr, next_addr);
}
led0_state((ret == 0) ? LED0_STATE_SLOW_FLASH : LED0_STATE_SLOW_INVERTED_FLASH);
return ret;
}
void hw_read(uint32_t addr, int len, uint8_t *buf) {
led0_state(LED0_STATE_FAST_FLASH);
#if defined(MBOOT_SPIFLASH_ADDR)
if (MBOOT_SPIFLASH_ADDR <= addr && addr < MBOOT_SPIFLASH_ADDR + MBOOT_SPIFLASH_BYTE_SIZE) {
mp_spiflash_read(MBOOT_SPIFLASH_SPIFLASH, addr - MBOOT_SPIFLASH_ADDR, len, buf);
} else
#endif
#if defined(MBOOT_SPIFLASH2_ADDR)
if (MBOOT_SPIFLASH2_ADDR <= addr && addr < MBOOT_SPIFLASH2_ADDR + MBOOT_SPIFLASH2_BYTE_SIZE) {
mp_spiflash_read(MBOOT_SPIFLASH2_SPIFLASH, addr - MBOOT_SPIFLASH2_ADDR, len, buf);
} else
#endif
{
// Other addresses, just read directly from memory
memcpy(buf, (void*)addr, len);
}
led0_state(LED0_STATE_SLOW_FLASH);
}
int hw_write(uint32_t addr, const uint8_t *src8, size_t len) {
int ret = -1;
led0_state(LED0_STATE_FAST_FLASH);
#if defined(MBOOT_SPIFLASH_ADDR)
if (MBOOT_SPIFLASH_ADDR <= addr && addr < MBOOT_SPIFLASH_ADDR + MBOOT_SPIFLASH_BYTE_SIZE) {
ret = mp_spiflash_write(MBOOT_SPIFLASH_SPIFLASH, addr - MBOOT_SPIFLASH_ADDR, len, src8);
} else
#endif
#if defined(MBOOT_SPIFLASH2_ADDR)
if (MBOOT_SPIFLASH2_ADDR <= addr && addr < MBOOT_SPIFLASH2_ADDR + MBOOT_SPIFLASH2_BYTE_SIZE) {
ret = mp_spiflash_write(MBOOT_SPIFLASH2_SPIFLASH, addr - MBOOT_SPIFLASH2_ADDR, len, src8);
} else
#endif
if (flash_is_valid_addr(addr)) {
ret = mboot_flash_write(addr, src8, len);
} else {
dfu_context.status = DFU_STATUS_ERROR_ADDRESS;
dfu_context.error = MBOOT_ERROR_STR_INVALID_ADDRESS_IDX;
}
led0_state((ret == 0) ? LED0_STATE_SLOW_FLASH : LED0_STATE_SLOW_INVERTED_FLASH);
return ret;
}
int do_page_erase(uint32_t addr, uint32_t *next_addr) {
#if MBOOT_ENABLE_PACKING
// Erase handled automatically for packed mode.
return 0;
#else
return hw_page_erase(addr, next_addr);
#endif
}
void do_read(uint32_t addr, int len, uint8_t *buf) {
#if MBOOT_ENABLE_PACKING
// Read disabled on packed (encrypted) mode.
dfu_context.status = DFU_STATUS_ERROR_FILE;
dfu_context.error = MBOOT_ERROR_STR_INVALID_READ_IDX;
led0_state(LED0_STATE_SLOW_INVERTED_FLASH);
#else
hw_read(addr, len, buf);
#endif
}
int do_write(uint32_t addr, const uint8_t *src8, size_t len) {
#if MBOOT_ENABLE_PACKING
return mboot_pack_write(addr, src8, len);
#else
return hw_write(addr, src8, len);
#endif
}
/******************************************************************************/
// I2C slave interface
#if defined(MBOOT_I2C_SCL)
#define PASTE2(a, b) a ## b
#define PASTE3(a, b, c) a ## b ## c
#define EVAL_PASTE2(a, b) PASTE2(a, b)
#define EVAL_PASTE3(a, b, c) PASTE3(a, b, c)
#define MBOOT_I2Cx EVAL_PASTE2(I2C, MBOOT_I2C_PERIPH_ID)
#define I2Cx_EV_IRQn EVAL_PASTE3(I2C, MBOOT_I2C_PERIPH_ID, _EV_IRQn)
#define I2Cx_EV_IRQHandler EVAL_PASTE3(I2C, MBOOT_I2C_PERIPH_ID, _EV_IRQHandler)
#define I2C_CMD_BUF_LEN (129)
enum {
I2C_CMD_ECHO = 1,
I2C_CMD_GETID, // () -> u8*12 unique id, ASCIIZ mcu name, ASCIIZ board name
I2C_CMD_GETCAPS, // not implemented
I2C_CMD_RESET, // () -> ()
I2C_CMD_CONFIG, // not implemented
I2C_CMD_GETLAYOUT, // () -> ASCII string
I2C_CMD_MASSERASE, // () -> ()
I2C_CMD_PAGEERASE, // le32 -> ()
I2C_CMD_SETRDADDR, // le32 -> ()
I2C_CMD_SETWRADDR, // le32 -> ()
I2C_CMD_READ, // u8 -> bytes
I2C_CMD_WRITE, // bytes -> ()
I2C_CMD_COPY, // not implemented
I2C_CMD_CALCHASH, // le32 -> u8*32
I2C_CMD_MARKVALID, // () -> ()
};
typedef struct _i2c_obj_t {
volatile bool cmd_send_arg;
volatile bool cmd_arg_sent;
volatile int cmd_arg;
volatile uint32_t cmd_rdaddr;
volatile uint32_t cmd_wraddr;
volatile uint16_t cmd_buf_pos;
uint8_t cmd_buf[I2C_CMD_BUF_LEN];
} i2c_obj_t;
static i2c_obj_t i2c_obj;
void i2c_init(int addr) {
i2c_obj.cmd_send_arg = false;
mp_hal_pin_config(MBOOT_I2C_SCL, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_NONE, MBOOT_I2C_ALTFUNC);
mp_hal_pin_config(MBOOT_I2C_SDA, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_NONE, MBOOT_I2C_ALTFUNC);
i2c_slave_init(MBOOT_I2Cx, I2Cx_EV_IRQn, IRQ_PRI_I2C, addr);
}
int i2c_slave_process_addr_match(i2c_slave_t *i2c, int rw) {
if (i2c_obj.cmd_arg_sent) {
i2c_obj.cmd_send_arg = false;
}
i2c_obj.cmd_buf_pos = 0;
return 0; // ACK
}
int i2c_slave_process_rx_byte(i2c_slave_t *i2c, uint8_t val) {
if (i2c_obj.cmd_buf_pos < sizeof(i2c_obj.cmd_buf)) {
i2c_obj.cmd_buf[i2c_obj.cmd_buf_pos++] = val;
}
return 0; // ACK
}
void i2c_slave_process_rx_end(i2c_slave_t *i2c) {
if (i2c_obj.cmd_buf_pos == 0) {
return;
}
int len = i2c_obj.cmd_buf_pos - 1;
uint8_t *buf = i2c_obj.cmd_buf;
if (buf[0] == I2C_CMD_ECHO) {
++len;
} else if (buf[0] == I2C_CMD_GETID && len == 0) {
memcpy(buf, (uint8_t*)MP_HAL_UNIQUE_ID_ADDRESS, 12);
memcpy(buf + 12, MICROPY_HW_MCU_NAME, sizeof(MICROPY_HW_MCU_NAME));
memcpy(buf + 12 + sizeof(MICROPY_HW_MCU_NAME), MICROPY_HW_BOARD_NAME, sizeof(MICROPY_HW_BOARD_NAME) - 1);
len = 12 + sizeof(MICROPY_HW_MCU_NAME) + sizeof(MICROPY_HW_BOARD_NAME) - 1;
} else if (buf[0] == I2C_CMD_RESET && len == 0) {
do_reset();
} else if (buf[0] == I2C_CMD_GETLAYOUT && len == 0) {
len = strlen(FLASH_LAYOUT_STR);
memcpy(buf, FLASH_LAYOUT_STR, len);
} else if (buf[0] == I2C_CMD_MASSERASE && len == 0) {
len = do_mass_erase();
} else if (buf[0] == I2C_CMD_PAGEERASE && len == 4) {
uint32_t next_addr;
len = do_page_erase(get_le32(buf + 1), &next_addr);
} else if (buf[0] == I2C_CMD_SETRDADDR && len == 4) {
i2c_obj.cmd_rdaddr = get_le32(buf + 1);
len = 0;
} else if (buf[0] == I2C_CMD_SETWRADDR && len == 4) {
i2c_obj.cmd_wraddr = get_le32(buf + 1);
len = 0;
} else if (buf[0] == I2C_CMD_READ && len == 1) {
len = buf[1];
if (len > I2C_CMD_BUF_LEN) {
len = I2C_CMD_BUF_LEN;
}
do_read(i2c_obj.cmd_rdaddr, len, buf);
i2c_obj.cmd_rdaddr += len;
} else if (buf[0] == I2C_CMD_WRITE) {
if (i2c_obj.cmd_wraddr == APPLICATION_ADDR) {
// Mark the 2 lower bits to indicate invalid app firmware
buf[1] |= APP_VALIDITY_BITS;
}
int ret = do_write(i2c_obj.cmd_wraddr, buf + 1, len);
if (ret < 0) {
len = ret;
} else {
i2c_obj.cmd_wraddr += len;
len = 0;
}
} else if (buf[0] == I2C_CMD_CALCHASH && len == 4) {
uint32_t hashlen = get_le32(buf + 1);
static CRYAL_SHA256_CTX ctx;
sha256_init(&ctx);
sha256_update(&ctx, (const void*)i2c_obj.cmd_rdaddr, hashlen);
i2c_obj.cmd_rdaddr += hashlen;
sha256_final(&ctx, buf);
len = 32;
} else if (buf[0] == I2C_CMD_MARKVALID && len == 0) {
uint32_t buf;
buf = *(volatile uint32_t*)APPLICATION_ADDR;
if ((buf & APP_VALIDITY_BITS) != APP_VALIDITY_BITS) {
len = -1;
} else {
buf &= ~APP_VALIDITY_BITS;
int ret = do_write(APPLICATION_ADDR, (void*)&buf, 4);
if (ret < 0) {
len = ret;
} else {
buf = *(volatile uint32_t*)APPLICATION_ADDR;
if ((buf & APP_VALIDITY_BITS) != 0) {
len = -2;
} else {
len = 0;
}
}
}
} else {
len = -127;
}
i2c_obj.cmd_arg = len;
i2c_obj.cmd_send_arg = true;
i2c_obj.cmd_arg_sent = false;
}
uint8_t i2c_slave_process_tx_byte(i2c_slave_t *i2c) {
if (i2c_obj.cmd_send_arg) {
i2c_obj.cmd_arg_sent = true;
return i2c_obj.cmd_arg;
} else if (i2c_obj.cmd_buf_pos < sizeof(i2c_obj.cmd_buf)) {
return i2c_obj.cmd_buf[i2c_obj.cmd_buf_pos++];
} else {
return 0;
}
}
void i2c_slave_process_tx_end(i2c_slave_t *i2c) {
}
#endif // defined(MBOOT_I2C_SCL)
/******************************************************************************/
// DFU
static void dfu_init(void) {
dfu_context.state = DFU_STATE_IDLE;
dfu_context.cmd = DFU_CMD_NONE;
dfu_context.status = DFU_STATUS_OK;
dfu_context.error = 0;
dfu_context.addr = 0x08000000;
}
static int dfu_process_dnload(void) {
int ret = -1;
if (dfu_context.wBlockNum == 0) {
// download control commands
if (dfu_context.wLength >= 1 && dfu_context.buf[0] == DFU_CMD_DNLOAD_ERASE) {
if (dfu_context.wLength == 1) {
// mass erase
ret = do_mass_erase();
if (ret != 0) {
dfu_context.cmd = DFU_CMD_NONE;
}
} else if (dfu_context.wLength == 5) {
// erase page
uint32_t next_addr;
ret = do_page_erase(get_le32(&dfu_context.buf[1]), &next_addr);
}
} else if (dfu_context.wLength >= 1 && dfu_context.buf[0] == DFU_CMD_DNLOAD_SET_ADDRESS) {
if (dfu_context.wLength == 5) {
// set address
dfu_context.addr = get_le32(&dfu_context.buf[1]);
ret = 0;
}
}
} else if (dfu_context.wBlockNum > 1) {
// write data to memory
uint32_t addr = (dfu_context.wBlockNum - 2) * DFU_XFER_SIZE + dfu_context.addr;
ret = do_write(addr, dfu_context.buf, dfu_context.wLength);
}
if (ret == 0) {
return DFU_STATE_DNLOAD_IDLE;
} else {
return DFU_STATE_ERROR;
}
}
static void dfu_handle_rx(int cmd, int arg, int len, const void *buf) {
if (cmd == DFU_CLRSTATUS) {
// clear status
dfu_context.state = DFU_STATE_IDLE;
dfu_context.cmd = DFU_CMD_NONE;
dfu_context.status = DFU_STATUS_OK;
dfu_context.error = 0;
} else if (cmd == DFU_ABORT) {
// clear status
dfu_context.state = DFU_STATE_IDLE;
dfu_context.cmd = DFU_CMD_NONE;
dfu_context.status = DFU_STATUS_OK;
dfu_context.error = 0;
} else if (cmd == DFU_DNLOAD) {
if (len == 0) {
// exit DFU
dfu_context.cmd = DFU_CMD_EXIT;
} else {
// download
dfu_context.cmd = DFU_CMD_DNLOAD;
dfu_context.wBlockNum = arg;
dfu_context.wLength = len;
memcpy(dfu_context.buf, buf, len);
}
}
}
static void dfu_process(void) {
if (dfu_context.state == DFU_STATE_MANIFEST) {
do_reset();
}
if (dfu_context.state == DFU_STATE_BUSY) {
if (dfu_context.cmd == DFU_CMD_DNLOAD) {
dfu_context.cmd = DFU_CMD_NONE;
dfu_context.state = dfu_process_dnload();
}
}
}
static int dfu_handle_tx(int cmd, int arg, int len, uint8_t *buf, int max_len) {
if (cmd == DFU_UPLOAD) {
if (arg >= 2) {
dfu_context.cmd = DFU_CMD_UPLOAD;
uint32_t addr = (arg - 2) * max_len + dfu_context.addr;
do_read(addr, len, buf);
return len;
}
} else if (cmd == DFU_GETSTATUS && len == 6) {
// execute command and get status
switch (dfu_context.cmd) {
case DFU_CMD_NONE:
break;
case DFU_CMD_EXIT:
dfu_context.state = DFU_STATE_MANIFEST;
break;
case DFU_CMD_UPLOAD:
dfu_context.state = DFU_STATE_UPLOAD_IDLE;
break;
case DFU_CMD_DNLOAD:
dfu_context.state = DFU_STATE_BUSY;
break;
default:
dfu_context.state = DFU_STATE_BUSY;
}
buf[0] = dfu_context.status; // bStatus
buf[1] = 0; // bwPollTimeout_lsb (ms)
buf[2] = 0; // bwPollTimeout (ms)
buf[3] = 0; // bwPollTimeout_msb (ms)
buf[4] = dfu_context.state; // bState
buf[5] = dfu_context.error; // iString
// Clear errors now they've been sent
dfu_context.status = DFU_STATUS_OK;
dfu_context.error = 0;
return 6;
} else if (cmd == DFU_GETSTATE && len == 1) {
buf[0] = dfu_context.state; // bState
return 1;
}
return -1;
}
/******************************************************************************/
// USB
#define USB_XFER_SIZE (DFU_XFER_SIZE)
#define USB_PHY_FS_ID (0)
#define USB_PHY_HS_ID (1)
typedef struct _pyb_usbdd_obj_t {
bool started;
bool tx_pending;
USBD_HandleTypeDef hUSBDDevice;
uint8_t bRequest;
uint16_t wValue;
uint16_t wLength;
__ALIGN_BEGIN uint8_t rx_buf[USB_XFER_SIZE] __ALIGN_END;
__ALIGN_BEGIN uint8_t tx_buf[USB_XFER_SIZE] __ALIGN_END;
// RAM to hold the current descriptors, which we configure on the fly
__ALIGN_BEGIN uint8_t usbd_device_desc[USB_LEN_DEV_DESC] __ALIGN_END;
__ALIGN_BEGIN uint8_t usbd_str_desc[USBD_MAX_STR_DESC_SIZ] __ALIGN_END;
} pyb_usbdd_obj_t;
#ifndef MBOOT_USBD_LANGID_STRING
#define MBOOT_USBD_LANGID_STRING (0x409)
#endif
#ifndef MBOOT_USBD_MANUFACTURER_STRING
#define MBOOT_USBD_MANUFACTURER_STRING "MicroPython"
#endif
#ifndef MBOOT_USBD_PRODUCT_STRING
#define MBOOT_USBD_PRODUCT_STRING "Pyboard DFU"
#endif
#ifndef MBOOT_USB_VID
#define MBOOT_USB_VID BOOTLOADER_DFU_USB_VID
#endif
#ifndef MBOOT_USB_PID
#define MBOOT_USB_PID BOOTLOADER_DFU_USB_PID
#endif
#if !MICROPY_HW_USB_IS_MULTI_OTG
STATIC const uint8_t usbd_fifo_size[USBD_PMA_NUM_FIFO] = {
32, 32, // EP0(out), EP0(in)
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 14x unused
};
#else
static const uint8_t usbd_fifo_size[] = {
32, 8, 16, 8, 16, 0, 0, // FS: RX, EP0(in), 5x IN endpoints
#if MICROPY_HW_USB_HS
116, 8, 64, 4, 64, 0, 0, 0, 0, 0, // HS: RX, EP0(in), 8x IN endpoints
#endif
};
#endif
__ALIGN_BEGIN static const uint8_t USBD_LangIDDesc[USB_LEN_LANGID_STR_DESC] __ALIGN_END = {
USB_LEN_LANGID_STR_DESC,
USB_DESC_TYPE_STRING,
LOBYTE(MBOOT_USBD_LANGID_STRING),
HIBYTE(MBOOT_USBD_LANGID_STRING),
};
static const uint8_t dev_descr[0x12] = {
0x12, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x40,
LOBYTE(MBOOT_USB_VID), HIBYTE(MBOOT_USB_VID),
LOBYTE(MBOOT_USB_PID), HIBYTE(MBOOT_USB_PID),
0x00, 0x22, 0x01, 0x02, 0x03, 0x01
};
// This may be modified by USBD_GetDescriptor
static uint8_t cfg_descr[9 + 9 + 9] =
"\x09\x02\x1b\x00\x01\x01\x00\xc0\x32"
"\x09\x04\x00\x00\x00\xfe\x01\x02\x04"
"\x09\x21\x0b\xff\x00\x00\x08\x1a\x01" // \x00\x08 goes with USB_XFER_SIZE
;
static uint8_t *pyb_usbdd_DeviceDescriptor(USBD_HandleTypeDef *pdev, uint16_t *length) {
*length = USB_LEN_DEV_DESC;
return (uint8_t*)dev_descr;
}
static char get_hex_char(int val) {
val &= 0xf;
if (val <= 9) {
return '0' + val;
} else {
return 'A' + val - 10;
}
}
static void format_hex(char *buf, int val) {
buf[0] = get_hex_char(val >> 4);
buf[1] = get_hex_char(val);
}
static uint8_t *pyb_usbdd_StrDescriptor(USBD_HandleTypeDef *pdev, uint8_t idx, uint16_t *length) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
uint8_t *str_desc = self->usbd_str_desc;
switch (idx) {
case USBD_IDX_LANGID_STR:
*length = sizeof(USBD_LangIDDesc);
return (uint8_t*)USBD_LangIDDesc; // the data should only be read from this buf
case USBD_IDX_MFC_STR:
USBD_GetString((uint8_t*)MBOOT_USBD_MANUFACTURER_STRING, str_desc, length);
return str_desc;
case USBD_IDX_PRODUCT_STR:
USBD_GetString((uint8_t*)MBOOT_USBD_PRODUCT_STRING, str_desc, length);
return str_desc;
case USBD_IDX_SERIAL_STR: {
// This document: http://www.usb.org/developers/docs/devclass_docs/usbmassbulk_10.pdf
// says that the serial number has to be at least 12 digits long and that
// the last 12 digits need to be unique. It also stipulates that the valid
// character set is that of upper-case hexadecimal digits.
//
// The onboard DFU bootloader produces a 12-digit serial number based on
// the 96-bit unique ID, so for consistency we go with this algorithm.
// You can see the serial number if you do:
//
// dfu-util -l
//
// See: https://my.st.com/52d187b7 for the algorithim used.
uint8_t *id = (uint8_t*)MP_HAL_UNIQUE_ID_ADDRESS;
char serial_buf[16];
format_hex(&serial_buf[0], id[11]);
format_hex(&serial_buf[2], id[10] + id[2]);
format_hex(&serial_buf[4], id[9]);
format_hex(&serial_buf[6], id[8] + id[0]);
format_hex(&serial_buf[8], id[7]);
format_hex(&serial_buf[10], id[6]);
serial_buf[12] = '\0';
USBD_GetString((uint8_t*)serial_buf, str_desc, length);
return str_desc;
}
case USBD_IDX_CONFIG_STR:
USBD_GetString((uint8_t*)FLASH_LAYOUT_STR, str_desc, length);
return str_desc;
case MBOOT_ERROR_STR_OVERWRITE_BOOTLOADER_IDX:
USBD_GetString((uint8_t*)MBOOT_ERROR_STR_OVERWRITE_BOOTLOADER, str_desc, length);
return str_desc;
case MBOOT_ERROR_STR_INVALID_ADDRESS_IDX:
USBD_GetString((uint8_t*)MBOOT_ERROR_STR_INVALID_ADDRESS, str_desc, length);
return str_desc;
#if MBOOT_ENABLE_PACKING
case MBOOT_ERROR_STR_INVALID_SIG_IDX:
USBD_GetString((uint8_t*)MBOOT_ERROR_STR_INVALID_SIG, str_desc, length);
return str_desc;
case MBOOT_ERROR_STR_INVALID_READ_IDX:
USBD_GetString((uint8_t*)MBOOT_ERROR_STR_INVALID_READ, str_desc, length);
return str_desc;
#endif
default:
return NULL;
}
}
static const USBD_DescriptorsTypeDef pyb_usbdd_descriptors = {
pyb_usbdd_DeviceDescriptor,
pyb_usbdd_StrDescriptor,
};
static uint8_t pyb_usbdd_Init(USBD_HandleTypeDef *pdev, uint8_t cfgidx) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
(void)self;
return USBD_OK;
}
static uint8_t pyb_usbdd_DeInit(USBD_HandleTypeDef *pdev, uint8_t cfgidx) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
(void)self;
return USBD_OK;
}
static uint8_t pyb_usbdd_Setup(USBD_HandleTypeDef *pdev, USBD_SetupReqTypedef *req) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
(void)self;
self->bRequest = req->bRequest;
self->wValue = req->wValue;
self->wLength = req->wLength;
if (req->bmRequest == 0x21) {
// host-to-device request
if (req->wLength == 0) {
// no data, process command straightaway
dfu_handle_rx(self->bRequest, self->wValue, 0, NULL);
} else {
// have data, prepare to receive it
USBD_CtlPrepareRx(pdev, self->rx_buf, req->wLength);
}
} else if (req->bmRequest == 0xa1) {
// device-to-host request
int len = dfu_handle_tx(self->bRequest, self->wValue, self->wLength, self->tx_buf, USB_XFER_SIZE);
if (len >= 0) {
self->tx_pending = true;
USBD_CtlSendData(&self->hUSBDDevice, self->tx_buf, len);
}
}
return USBD_OK;
}
static uint8_t pyb_usbdd_EP0_TxSent(USBD_HandleTypeDef *pdev) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
self->tx_pending = false;
#if !USE_USB_POLLING
// Process now that we have sent a response
dfu_process();
#endif
return USBD_OK;
}
static uint8_t pyb_usbdd_EP0_RxReady(USBD_HandleTypeDef *pdev) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
dfu_handle_rx(self->bRequest, self->wValue, self->wLength, self->rx_buf);
return USBD_OK;
}
static uint8_t *pyb_usbdd_GetCfgDesc(USBD_HandleTypeDef *pdev, uint16_t *length) {
*length = sizeof(cfg_descr);
return (uint8_t*)cfg_descr;
}
// this is used only in high-speed mode, which we don't support
static uint8_t *pyb_usbdd_GetDeviceQualifierDescriptor(USBD_HandleTypeDef *pdev, uint16_t *length) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
(void)self;
/*
*length = sizeof(USBD_CDC_MSC_HID_DeviceQualifierDesc);
return USBD_CDC_MSC_HID_DeviceQualifierDesc;
*/
*length = 0;
return NULL;
}
static const USBD_ClassTypeDef pyb_usbdd_class = {
pyb_usbdd_Init,
pyb_usbdd_DeInit,
pyb_usbdd_Setup,
pyb_usbdd_EP0_TxSent,
pyb_usbdd_EP0_RxReady,
NULL, // pyb_usbdd_DataIn,
NULL, // pyb_usbdd_DataOut,
NULL, // SOF
NULL, // IsoINIncomplete
NULL, // IsoOUTIncomplete
pyb_usbdd_GetCfgDesc,
pyb_usbdd_GetCfgDesc,
pyb_usbdd_GetCfgDesc,
pyb_usbdd_GetDeviceQualifierDescriptor,
};
static pyb_usbdd_obj_t pyb_usbdd SECTION_NOZERO_BSS;
static int pyb_usbdd_detect_port(void) {
#if MBOOT_USB_AUTODETECT_PORT
mp_hal_pin_config(pin_A11, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_UP, 0);
mp_hal_pin_config(pin_A12, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_UP, 0);
int state = mp_hal_pin_read(pin_A11) == 0 && mp_hal_pin_read(pin_A12) == 0;
mp_hal_pin_config(pin_A11, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_NONE, 0);
mp_hal_pin_config(pin_A12, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_NONE, 0);
if (state) {
return USB_PHY_FS_ID;
}
mp_hal_pin_config(pin_B14, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_UP, 0);
mp_hal_pin_config(pin_B15, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_UP, 0);
state = mp_hal_pin_read(pin_B14) == 0 && mp_hal_pin_read(pin_B15) == 0;
mp_hal_pin_config(pin_B14, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_NONE, 0);
mp_hal_pin_config(pin_B15, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_NONE, 0);
if (state) {
return USB_PHY_HS_ID;
}
#endif
return MICROPY_HW_USB_MAIN_DEV;
}
static void pyb_usbdd_init(pyb_usbdd_obj_t *self, int phy_id) {
self->started = false;
self->tx_pending = false;
USBD_HandleTypeDef *usbd = &self->hUSBDDevice;
usbd->id = phy_id;
usbd->dev_state = USBD_STATE_DEFAULT;
usbd->pDesc = (USBD_DescriptorsTypeDef*)&pyb_usbdd_descriptors;
usbd->pClass = &pyb_usbdd_class;
usbd->pClassData = self;
}
static void pyb_usbdd_start(pyb_usbdd_obj_t *self) {
if (!self->started) {
#if defined(STM32H7)
PWR->CR3 |= PWR_CR3_USB33DEN;
while (!(PWR->CR3 & PWR_CR3_USB33RDY)) {
}
#endif
USBD_LL_Init(&self->hUSBDDevice, 0, usbd_fifo_size);
USBD_LL_Start(&self->hUSBDDevice);
self->started = true;
}
}
static void pyb_usbdd_stop(pyb_usbdd_obj_t *self) {
if (self->started) {
USBD_Stop(&self->hUSBDDevice);
self->started = false;
}
}
static int pyb_usbdd_shutdown(void) {
pyb_usbdd_stop(&pyb_usbdd);
return 0;
}
/******************************************************************************/
// main
#if defined(MBOOT_BOARD_GET_RESET_MODE)
static inline int mboot_get_reset_mode(void) {
return MBOOT_BOARD_GET_RESET_MODE();
}
#else
#define RESET_MODE_NUM_STATES (4)
#define RESET_MODE_TIMEOUT_CYCLES (8)
#ifdef LED2
#ifdef LED3
#define RESET_MODE_LED_STATES 0x8421
#else
#define RESET_MODE_LED_STATES 0x7421
#endif
#else
#define RESET_MODE_LED_STATES 0x3210
#endif
static void usrbtn_init(void) {
mp_hal_pin_config(MICROPY_HW_USRSW_PIN, MP_HAL_PIN_MODE_INPUT, MICROPY_HW_USRSW_PULL, 0);
}
static int usrbtn_state(void) {
return mp_hal_pin_read(MICROPY_HW_USRSW_PIN) == MICROPY_HW_USRSW_PRESSED;
}
static int mboot_get_reset_mode(void) {
usrbtn_init();
int reset_mode = BOARDCTRL_RESET_MODE_NORMAL;
if (usrbtn_state()) {
// Cycle through reset modes while USR is held
// Timeout is roughly 20s, where reset_mode=1
systick_init();
led_init();
reset_mode = 0;
for (int i = 0; i < (RESET_MODE_NUM_STATES * RESET_MODE_TIMEOUT_CYCLES + 1) * 32; i++) {
if (i % 32 == 0) {
if (++reset_mode > RESET_MODE_NUM_STATES) {
reset_mode = BOARDCTRL_RESET_MODE_NORMAL;
}
uint8_t l = RESET_MODE_LED_STATES >> ((reset_mode - 1) * 4);
led_state_all(l);
}
if (!usrbtn_state()) {
break;
}
mp_hal_delay_ms(19);
}
// Flash the selected reset mode
for (int i = 0; i < 6; i++) {
led_state_all(0);
mp_hal_delay_ms(50);
uint8_t l = RESET_MODE_LED_STATES >> ((reset_mode - 1) * 4);
led_state_all(l);
mp_hal_delay_ms(50);
}
mp_hal_delay_ms(300);
}
return reset_mode;
}
#endif
NORETURN static __attribute__((naked)) void branch_to_application(uint32_t r0, uint32_t bl_addr) {
__asm volatile (
"ldr r2, [r1, #0]\n" // get address of stack pointer
"msr msp, r2\n" // set stack pointer
"ldr r2, [r1, #4]\n" // get address of destination
"bx r2\n" // branch to application
);
MP_UNREACHABLE;
}
static void try_enter_application(int reset_mode) {
uint32_t msp = *(volatile uint32_t*)APPLICATION_ADDR;
if ((msp & APP_VALIDITY_BITS) != 0) {
// Application is invalid.
return;
}
// undo our DFU settings
// TODO probably should disable all IRQ sources first
#if defined(MBOOT_BOARD_CLEANUP)
MBOOT_BOARD_CLEANUP(reset_mode);
#endif
#if USE_CACHE && defined(STM32F7)
SCB_DisableICache();
SCB_DisableDCache();
#endif
// Jump to the application.
branch_to_application(reset_mode, APPLICATION_ADDR);
}
static void leave_bootloader(void) {
#if !MBOOT_LEAVE_BOOTLOADER_VIA_RESET
// Try to enter the application via a jump, if it's valid.
try_enter_application(BOARDCTRL_RESET_MODE_BOOTLOADER);
#endif
NVIC_SystemReset();
}
static void do_reset(void) {
led_state_all(0);
mp_hal_delay_ms(50);
pyb_usbdd_shutdown();
#if defined(MBOOT_I2C_SCL)
i2c_slave_shutdown(MBOOT_I2Cx, I2Cx_EV_IRQn);
#endif
mp_hal_delay_ms(50);
leave_bootloader();
}
extern PCD_HandleTypeDef pcd_fs_handle;
extern PCD_HandleTypeDef pcd_hs_handle;
void stm32_main(int initial_r0) {
#if defined(STM32H7)
// Configure write-once power options, and wait for voltage levels to be ready
PWR->CR3 = PWR_CR3_LDOEN;
while (!(PWR->CSR1 & PWR_CSR1_ACTVOSRDY)) {
}
// Reset the kernel clock configuration registers for all domains.
RCC->D1CCIPR = 0x00000000;
RCC->D2CCIP1R = 0x00000000;
RCC->D2CCIP2R = 0x00000000;
RCC->D3CCIPR = 0x00000000;
#endif
// Make sure IRQ vector table points to flash where this bootloader lives.
SCB->VTOR = MBOOT_VTOR;
// Enable 8-byte stack alignment for IRQ handlers, in accord with EABI
SCB->CCR |= SCB_CCR_STKALIGN_Msk;
#if defined(STM32F4)
#if INSTRUCTION_CACHE_ENABLE
__HAL_FLASH_INSTRUCTION_CACHE_ENABLE();
#endif
#if DATA_CACHE_ENABLE
__HAL_FLASH_DATA_CACHE_ENABLE();
#endif
#if PREFETCH_ENABLE
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
#endif
#elif defined(STM32F7)
#if ART_ACCLERATOR_ENABLE
__HAL_FLASH_ART_ENABLE();
#endif
#endif
NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
#if USE_CACHE && defined(STM32F7)
SCB_EnableICache();
SCB_EnableDCache();
#endif
#if defined(MBOOT_BOARD_EARLY_INIT)
MBOOT_BOARD_EARLY_INIT();
#endif
#ifdef MBOOT_BOOTPIN_PIN
mp_hal_pin_config(MBOOT_BOOTPIN_PIN, MP_HAL_PIN_MODE_INPUT, MBOOT_BOOTPIN_PULL, 0);
if (mp_hal_pin_read(MBOOT_BOOTPIN_PIN) == MBOOT_BOOTPIN_ACTIVE) {
goto enter_bootloader;
}
#endif
if ((initial_r0 & 0xffffff00) == 0x70ad0000) {
goto enter_bootloader;
}
int reset_mode = mboot_get_reset_mode();
if (reset_mode != BOARDCTRL_RESET_MODE_BOOTLOADER) {
// Bootloader mode was not selected so try to enter the application,
// passing through the reset_mode. This will return if the application
// is invalid.
try_enter_application(reset_mode);
}
enter_bootloader:
// Init subsystems (mboot_get_reset_mode() may call these, calling them again is ok)
led_init();
// set the system clock to be HSE
SystemClock_Config();
#if USE_USB_POLLING
// irqs with a priority value greater or equal to "pri" will be disabled
// "pri" should be between 1 and 15 inclusive
uint32_t pri = 2;
pri <<= (8 - __NVIC_PRIO_BITS);
__ASM volatile ("msr basepri_max, %0" : : "r" (pri) : "memory");
#endif
#if defined(MBOOT_SPIFLASH_ADDR)
MBOOT_SPIFLASH_SPIFLASH->config = MBOOT_SPIFLASH_CONFIG;
mp_spiflash_init(MBOOT_SPIFLASH_SPIFLASH);
#endif
#if defined(MBOOT_SPIFLASH2_ADDR)
MBOOT_SPIFLASH2_SPIFLASH->config = MBOOT_SPIFLASH2_CONFIG;
mp_spiflash_init(MBOOT_SPIFLASH2_SPIFLASH);
#endif
#if MBOOT_ENABLE_PACKING
mboot_pack_init();
#endif
#if MBOOT_FSLOAD
if ((initial_r0 & 0xffffff80) == 0x70ad0080) {
// Application passed through elements, validate then process them
const uint8_t *elem_end = elem_search(ELEM_DATA_START, ELEM_TYPE_END);
if (elem_end != NULL && elem_end[-1] == 0) {
int ret = fsload_process();
// If there is a valid ELEM_TYPE_STATUS element then store the status in the given location.
const uint8_t *elem_status = elem_search(ELEM_DATA_START, ELEM_TYPE_STATUS);
if (elem_status != NULL && elem_status[-1] == 4) {
uint32_t *status_ptr = (uint32_t *)get_le32(&elem_status[0]);
LL_PWR_EnableBkUpAccess(); // In case status_ptr points to backup registers
*status_ptr = ret;
}
}
// Always reset because the application is expecting to resume
led_state_all(0);
leave_bootloader();
}
#endif
dfu_init();
pyb_usbdd_init(&pyb_usbdd, pyb_usbdd_detect_port());
pyb_usbdd_start(&pyb_usbdd);
#if defined(MBOOT_I2C_SCL)
initial_r0 &= 0x7f;
if (initial_r0 == 0) {
initial_r0 = 0x23; // Default I2C address
}
i2c_init(initial_r0);
#endif
led_state_all(0);
led0_state(LED0_STATE_SLOW_FLASH);
#if MBOOT_USB_RESET_ON_DISCONNECT
bool has_connected = false;
#endif
for (;;) {
#if USE_USB_POLLING
#if MBOOT_USB_AUTODETECT_PORT || MICROPY_HW_USB_MAIN_DEV == USB_PHY_FS_ID
if (USB_OTG_FS->GINTSTS & USB_OTG_FS->GINTMSK) {
HAL_PCD_IRQHandler(&pcd_fs_handle);
}
#endif
#if MBOOT_USB_AUTODETECT_PORT || MICROPY_HW_USB_MAIN_DEV == USB_PHY_HS_ID
if (USB_OTG_HS->GINTSTS & USB_OTG_HS->GINTMSK) {
HAL_PCD_IRQHandler(&pcd_hs_handle);
}
#endif
if (!pyb_usbdd.tx_pending) {
dfu_process();
}
#else // !USE_USB_POLLING
__WFI();
#endif
#if MBOOT_USB_RESET_ON_DISCONNECT
if (pyb_usbdd.hUSBDDevice.dev_state == USBD_STATE_CONFIGURED) {
has_connected = true;
}
if (has_connected && pyb_usbdd.hUSBDDevice.dev_state == USBD_STATE_SUSPENDED) {
do_reset();
}
#endif
}
}
void NMI_Handler(void) {
}
void MemManage_Handler(void) {
while (1) {
__fatal_error("MemManage");
}
}
void BusFault_Handler(void) {
while (1) {
__fatal_error("BusFault");
}
}
void UsageFault_Handler(void) {
while (1) {
__fatal_error("UsageFault");
}
}
void SVC_Handler(void) {
}
void DebugMon_Handler(void) {
}
void PendSV_Handler(void) {
}
void SysTick_Handler(void) {
systick_ms += 1;
// Read the systick control regster. This has the side effect of clearing
// the COUNTFLAG bit, which makes the logic in mp_hal_ticks_us
// work properly.
SysTick->CTRL;
// Update the LED0 state from here to ensure it's consistent regardless of
// other processing going on in interrupts or main.
led0_update();
}
#if defined(MBOOT_I2C_SCL)
void I2Cx_EV_IRQHandler(void) {
i2c_slave_ev_irq_handler(MBOOT_I2Cx);
}
#endif
#if !USE_USB_POLLING
#if defined(STM32WB)
void USB_LP_IRQHandler(void) {
HAL_PCD_IRQHandler(&pcd_fs_handle);
}
#else
#if MBOOT_USB_AUTODETECT_PORT || MICROPY_HW_USB_MAIN_DEV == USB_PHY_FS_ID
void OTG_FS_IRQHandler(void) {
HAL_PCD_IRQHandler(&pcd_fs_handle);
}
#endif
#if MBOOT_USB_AUTODETECT_PORT || MICROPY_HW_USB_MAIN_DEV == USB_PHY_HS_ID
void OTG_HS_IRQHandler(void) {
HAL_PCD_IRQHandler(&pcd_hs_handle);
}
#endif
#endif
#endif