circuitpython/ports/stm32/mboot/fsload.c
Damien George b2deea6762 stm32/mboot: Consolidate all UI and add general state change hooks.
All user interface (LED, button) code has been moved to ui.c, and the
interface to this code with the rest of the system now goes through calls
to mboot_state_change().  This state-change function can be overridden by a
board to fully customise the user interface behaviour.

Signed-off-by: Damien George <damien@micropython.org>
2022-04-11 15:52:41 +10:00

308 lines
9.5 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/mphal.h"
#include "lib/uzlib/tinf.h"
#include "mboot.h"
#include "pack.h"
#include "vfs.h"
// Default block size used for mount operations if none given.
#ifndef MBOOT_FSLOAD_DEFAULT_BLOCK_SIZE
#define MBOOT_FSLOAD_DEFAULT_BLOCK_SIZE (4096)
#endif
#if MBOOT_FSLOAD
#if !(MBOOT_VFS_FAT || MBOOT_VFS_LFS1 || MBOOT_VFS_LFS2)
#error Must enable at least one VFS component
#endif
#if MBOOT_ENABLE_PACKING
// Packed DFU files are gzip'd internally, not on the outside, so reads of the file
// just read the file directly.
static void *input_stream_data;
static stream_read_t input_stream_read_meth;
static inline int input_stream_init(void *stream_data, stream_read_t stream_read) {
input_stream_data = stream_data;
input_stream_read_meth = stream_read;
return 0;
}
static inline int input_stream_read(size_t len, uint8_t *buf) {
return input_stream_read_meth(input_stream_data, buf, len);
}
#else
// Standard (non-packed) DFU files must be gzip'd externally / on the outside, so
// reads of the file go through gz_stream.
static inline int input_stream_init(void *stream_data, stream_read_t stream_read) {
return gz_stream_init_from_stream(stream_data, stream_read);
}
static inline int input_stream_read(size_t len, uint8_t *buf) {
return gz_stream_read(len, buf);
}
#endif
static int fsload_program_file(bool write_to_flash) {
// Parse DFU
uint32_t crc = 0xffffffff;
uint8_t buf[512];
size_t file_offset;
// Read file header, <5sBIB
int res = input_stream_read(11, buf);
if (res != 11) {
return -MBOOT_ERRNO_DFU_READ_ERROR;
}
file_offset = 11;
crc = uzlib_crc32(buf, 11, crc);
// Validate header, version 1
if (memcmp(buf, "DfuSe\x01", 6) != 0) {
return -MBOOT_ERRNO_DFU_INVALID_HEADER;
}
// Must have only 1 target
if (buf[10] != 1) {
return -MBOOT_ERRNO_DFU_TOO_MANY_TARGETS;
}
// Get total size
uint32_t total_size = get_le32(buf + 6);
// Read target header, <6sBi255sII
res = input_stream_read(274, buf);
if (res != 274) {
return -MBOOT_ERRNO_DFU_READ_ERROR;
}
file_offset += 274;
crc = uzlib_crc32(buf, 274, crc);
// Validate target header, with alt being 0
if (memcmp(buf, "Target\x00", 7) != 0) {
return -MBOOT_ERRNO_DFU_INVALID_TARGET;
}
// Get target size and number of elements
uint32_t target_size = get_le32(buf + 266);
uint32_t num_elems = get_le32(buf + 270);
size_t file_offset_target = file_offset;
size_t bytes_processed = 0;
// Parse each element
for (size_t elem = 0; elem < num_elems; ++elem) {
// Read element header, <II
res = input_stream_read(8, buf);
if (res != 8) {
return -MBOOT_ERRNO_DFU_READ_ERROR;
}
file_offset += 8;
crc = uzlib_crc32(buf, 8, crc);
// Get element destination address and size
uint32_t elem_addr = get_le32(buf);
uint32_t elem_size = get_le32(buf + 4);
#if !MBOOT_ENABLE_PACKING
// Erase flash before writing
if (write_to_flash) {
uint32_t addr = elem_addr;
while (addr < elem_addr + elem_size) {
res = do_page_erase(addr, &addr);
if (res != 0) {
return res;
}
}
}
#endif
// Read element data and possibly write to flash
for (uint32_t s = elem_size; s;) {
uint32_t l = s;
if (l > sizeof(buf)) {
l = sizeof(buf);
}
res = input_stream_read(l, buf);
if (res != l) {
return -MBOOT_ERRNO_DFU_READ_ERROR;
}
crc = uzlib_crc32(buf, l, crc);
res = do_write(elem_addr, buf, l, !write_to_flash);
if (res != 0) {
return res;
}
elem_addr += l;
s -= l;
bytes_processed += l;
mboot_state_change(MBOOT_STATE_FSLOAD_PROGRESS, write_to_flash << 31 | bytes_processed);
}
file_offset += elem_size;
}
if (target_size != file_offset - file_offset_target) {
return -MBOOT_ERRNO_DFU_INVALID_SIZE;
}
if (total_size != file_offset) {
return -MBOOT_ERRNO_DFU_INVALID_SIZE;
}
// Read trailing info
res = input_stream_read(16, buf);
if (res != 16) {
return -MBOOT_ERRNO_DFU_READ_ERROR;
}
// The final 4 bytes of the file are the expected CRC32, so including these
// bytes in the CRC calculation should yield a final CRC32 of 0.
crc = uzlib_crc32(buf, 16, crc);
if (crc != 0) {
return -MBOOT_ERRNO_DFU_INVALID_CRC;
}
return 0;
}
static int fsload_validate_and_program_file(void *stream, const stream_methods_t *meth, const char *fname) {
// First pass verifies the file, second pass programs it
for (unsigned int pass = 0; pass <= 1; ++pass) {
led_state_all(pass == 0 ? 2 : 4);
int res = meth->open(stream, fname);
if (res == 0) {
res = input_stream_init(stream, meth->read);
if (res == 0) {
res = fsload_program_file(pass == 0 ? false : true);
}
}
meth->close(stream);
if (res != 0) {
return res;
}
}
return 0;
}
int fsload_process(void) {
const uint8_t *elem = elem_search(ELEM_DATA_START, ELEM_TYPE_FSLOAD);
if (elem == NULL || elem[-1] < 2) {
return -MBOOT_ERRNO_FSLOAD_NO_FSLOAD;
}
// Get mount point id and create null-terminated filename
uint8_t mount_point = elem[0];
uint8_t fname_len = elem[-1] - 1;
char fname[256];
memcpy(fname, &elem[1], fname_len);
fname[fname_len] = '\0';
elem = ELEM_DATA_START;
for (;;) {
elem = elem_search(elem, ELEM_TYPE_MOUNT);
if (elem == NULL) {
// End of elements.
return -MBOOT_ERRNO_FSLOAD_NO_MOUNT;
}
mboot_addr_t base_addr;
mboot_addr_t byte_len;
uint32_t block_size = MBOOT_FSLOAD_DEFAULT_BLOCK_SIZE;
if (elem[-1] == 10 || elem[-1] == 14) {
// 32-bit base and length given, extract them.
base_addr = get_le32(&elem[2]);
byte_len = get_le32(&elem[6]);
if (elem[-1] == 14) {
// Block size given, extract it.
block_size = get_le32(&elem[10]);
}
#if MBOOT_ADDRESS_SPACE_64BIT
} else if (elem[-1] == 22) {
// 64-bit base and length given, and block size, so extract them.
base_addr = get_le64(&elem[2]);
byte_len = get_le64(&elem[10]);
block_size = get_le32(&elem[18]);
#endif
} else {
// Invalid MOUNT element.
return -MBOOT_ERRNO_FSLOAD_INVALID_MOUNT;
}
if (elem[0] == mount_point) {
int ret;
union {
#if MBOOT_VFS_FAT
vfs_fat_context_t fat;
#endif
#if MBOOT_VFS_LFS1
vfs_lfs1_context_t lfs1;
#endif
#if MBOOT_VFS_LFS2
vfs_lfs2_context_t lfs2;
#endif
} ctx;
const stream_methods_t *methods;
#if MBOOT_VFS_FAT
if (elem[1] == ELEM_MOUNT_FAT) {
(void)block_size;
ret = vfs_fat_mount(&ctx.fat, base_addr, byte_len);
methods = &vfs_fat_stream_methods;
} else
#endif
#if MBOOT_VFS_LFS1
if (elem[1] == ELEM_MOUNT_LFS1) {
ret = vfs_lfs1_mount(&ctx.lfs1, base_addr, byte_len, block_size);
methods = &vfs_lfs1_stream_methods;
} else
#endif
#if MBOOT_VFS_LFS2
if (elem[1] == ELEM_MOUNT_LFS2) {
ret = vfs_lfs2_mount(&ctx.lfs2, base_addr, byte_len, block_size);
methods = &vfs_lfs2_stream_methods;
} else
#endif
{
// Unknown filesystem type
return -MBOOT_ERRNO_FSLOAD_INVALID_MOUNT;
}
if (ret == 0) {
ret = fsload_validate_and_program_file(&ctx, methods, fname);
}
return ret;
}
elem += elem[-1];
}
}
#endif // MBOOT_FSLOAD