circuitpython/py/objint.c
Damien George c073519ec8 py/objint: Handle special case of -0 when classifying fp as int.
Otherwise -0.0 is classified as a bigint, which for builds without bigints
will lead unexpectedly to an overflow.
2017-03-23 23:51:35 +11:00

460 lines
15 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include "py/nlr.h"
#include "py/parsenum.h"
#include "py/smallint.h"
#include "py/objint.h"
#include "py/objstr.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#include "py/binary.h"
#if MICROPY_PY_BUILTINS_FLOAT
#include <math.h>
#endif
// This dispatcher function is expected to be independent of the implementation of long int
STATIC mp_obj_t mp_obj_int_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
(void)type_in;
mp_arg_check_num(n_args, n_kw, 0, 2, false);
switch (n_args) {
case 0:
return MP_OBJ_NEW_SMALL_INT(0);
case 1:
if (MP_OBJ_IS_INT(args[0])) {
// already an int (small or long), just return it
return args[0];
} else if (MP_OBJ_IS_STR_OR_BYTES(args[0])) {
// a string, parse it
mp_uint_t l;
const char *s = mp_obj_str_get_data(args[0], &l);
return mp_parse_num_integer(s, l, 0, NULL);
#if MICROPY_PY_BUILTINS_FLOAT
} else if (mp_obj_is_float(args[0])) {
return mp_obj_new_int_from_float(mp_obj_float_get(args[0]));
#endif
} else {
// try to convert to small int (eg from bool)
return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0]));
}
case 2:
default: {
// should be a string, parse it
// TODO proper error checking of argument types
mp_uint_t l;
const char *s = mp_obj_str_get_data(args[0], &l);
return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL);
}
}
}
#if MICROPY_PY_BUILTINS_FLOAT
mp_fp_as_int_class_t mp_classify_fp_as_int(mp_float_t val) {
union {
mp_float_t f;
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
uint32_t i;
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
uint32_t i[2];
#endif
} u = {val};
uint32_t e;
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
e = u.i;
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
e = u.i[MP_ENDIANNESS_LITTLE];
#endif
#define MP_FLOAT_SIGN_SHIFT_I32 ((MP_FLOAT_FRAC_BITS + MP_FLOAT_EXP_BITS) % 32)
#define MP_FLOAT_EXP_SHIFT_I32 (MP_FLOAT_FRAC_BITS % 32)
if (e & (1 << MP_FLOAT_SIGN_SHIFT_I32)) {
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
e |= u.i[MP_ENDIANNESS_BIG] != 0;
#endif
if ((e & ~(1 << MP_FLOAT_SIGN_SHIFT_I32)) == 0) {
// handle case of -0 (when sign is set but rest of bits are zero)
e = 0;
} else {
e += ((1 << MP_FLOAT_EXP_BITS) - 1) << MP_FLOAT_EXP_SHIFT_I32;
}
} else {
e &= ~((1 << MP_FLOAT_EXP_SHIFT_I32) - 1);
}
// 8 * sizeof(uintptr_t) counts the number of bits for a small int
// TODO provide a way to configure this properly
if (e <= ((8 * sizeof(uintptr_t) + MP_FLOAT_EXP_BIAS - 3) << MP_FLOAT_EXP_SHIFT_I32)) {
return MP_FP_CLASS_FIT_SMALLINT;
}
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
if (e <= (((sizeof(long long) * BITS_PER_BYTE) + MP_FLOAT_EXP_BIAS - 2) << MP_FLOAT_EXP_SHIFT_I32)) {
return MP_FP_CLASS_FIT_LONGINT;
}
#endif
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
return MP_FP_CLASS_FIT_LONGINT;
#else
return MP_FP_CLASS_OVERFLOW;
#endif
}
#undef MP_FLOAT_SIGN_SHIFT_I32
#undef MP_FLOAT_EXP_SHIFT_I32
#endif
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
typedef mp_longint_impl_t fmt_int_t;
#else
typedef mp_int_t fmt_int_t;
#endif
void mp_obj_int_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
(void)kind;
// The size of this buffer is rather arbitrary. If it's not large
// enough, a dynamic one will be allocated.
char stack_buf[sizeof(fmt_int_t) * 4];
char *buf = stack_buf;
size_t buf_size = sizeof(stack_buf);
size_t fmt_size;
char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0');
mp_print_str(print, str);
if (buf != stack_buf) {
m_del(char, buf, buf_size);
}
}
STATIC const uint8_t log_base2_floor[] = {
0, 1, 1, 2,
2, 2, 2, 3,
3, 3, 3, 3,
3, 3, 3, 4,
/* if needed, these are the values for higher bases
4, 4, 4, 4,
4, 4, 4, 4,
4, 4, 4, 4,
4, 4, 4, 5
*/
};
size_t mp_int_format_size(size_t num_bits, int base, const char *prefix, char comma) {
assert(2 <= base && base <= 16);
size_t num_digits = num_bits / log_base2_floor[base - 1] + 1;
size_t num_commas = comma ? num_digits / 3 : 0;
size_t prefix_len = prefix ? strlen(prefix) : 0;
return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte
}
// This routine expects you to pass in a buffer and size (in *buf and *buf_size).
// If, for some reason, this buffer is too small, then it will allocate a
// buffer and return the allocated buffer and size in *buf and *buf_size. It
// is the callers responsibility to free this allocated buffer.
//
// The resulting formatted string will be returned from this function and the
// formatted size will be in *fmt_size.
char *mp_obj_int_formatted(char **buf, size_t *buf_size, size_t *fmt_size, mp_const_obj_t self_in,
int base, const char *prefix, char base_char, char comma) {
fmt_int_t num;
if (MP_OBJ_IS_SMALL_INT(self_in)) {
// A small int; get the integer value to format.
num = mp_obj_get_int(self_in);
#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
} else if (MP_OBJ_IS_TYPE(self_in, &mp_type_int)) {
// Not a small int.
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
const mp_obj_int_t *self = self_in;
// Get the value to format; mp_obj_get_int truncates to mp_int_t.
num = self->val;
#else
// Delegate to the implementation for the long int.
return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma);
#endif
#endif
} else {
// Not an int.
**buf = '\0';
*fmt_size = 0;
return *buf;
}
char sign = '\0';
if (num < 0) {
num = -num;
sign = '-';
}
size_t needed_size = mp_int_format_size(sizeof(fmt_int_t) * 8, base, prefix, comma);
if (needed_size > *buf_size) {
*buf = m_new(char, needed_size);
*buf_size = needed_size;
}
char *str = *buf;
char *b = str + needed_size;
*(--b) = '\0';
char *last_comma = b;
if (num == 0) {
*(--b) = '0';
} else {
do {
int c = num % base;
num /= base;
if (c >= 10) {
c += base_char - 10;
} else {
c += '0';
}
*(--b) = c;
if (comma && num != 0 && b > str && (last_comma - b) == 3) {
*(--b) = comma;
last_comma = b;
}
}
while (b > str && num != 0);
}
if (prefix) {
size_t prefix_len = strlen(prefix);
char *p = b - prefix_len;
if (p > str) {
b = p;
while (*prefix) {
*p++ = *prefix++;
}
}
}
if (sign && b > str) {
*(--b) = sign;
}
*fmt_size = *buf + needed_size - b - 1;
return b;
}
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
int mp_obj_int_sign(mp_obj_t self_in) {
mp_int_t val = mp_obj_get_int(self_in);
if (val < 0) {
return -1;
} else if (val > 0) {
return 1;
} else {
return 0;
}
}
// This must handle int and bool types, and must raise a
// TypeError if the argument is not integral
mp_obj_t mp_obj_int_abs(mp_obj_t self_in) {
mp_int_t val = mp_obj_get_int(self_in);
if (val < 0) {
val = -val;
}
return MP_OBJ_NEW_SMALL_INT(val);
}
// This is called for operations on SMALL_INT that are not handled by mp_unary_op
mp_obj_t mp_obj_int_unary_op(mp_uint_t op, mp_obj_t o_in) {
return MP_OBJ_NULL; // op not supported
}
// This is called for operations on SMALL_INT that are not handled by mp_binary_op
mp_obj_t mp_obj_int_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in);
}
// This is called only with strings whose value doesn't fit in SMALL_INT
mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base) {
mp_raise_msg(&mp_type_OverflowError, "long int not supported in this build");
return mp_const_none;
}
// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
mp_obj_t mp_obj_new_int_from_ll(long long val) {
mp_raise_msg(&mp_type_OverflowError, "small int overflow");
return mp_const_none;
}
// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) {
mp_raise_msg(&mp_type_OverflowError, "small int overflow");
return mp_const_none;
}
mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) {
// SMALL_INT accepts only signed numbers, so make sure the input
// value fits completely in the small-int positive range.
if ((value & ~MP_SMALL_INT_POSITIVE_MASK) == 0) {
return MP_OBJ_NEW_SMALL_INT(value);
}
mp_raise_msg(&mp_type_OverflowError, "small int overflow");
return mp_const_none;
}
#if MICROPY_PY_BUILTINS_FLOAT
mp_obj_t mp_obj_new_int_from_float(mp_float_t val) {
int cl = fpclassify(val);
if (cl == FP_INFINITE) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OverflowError, "can't convert inf to int"));
} else if (cl == FP_NAN) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "can't convert NaN to int"));
} else {
mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val);
if (icl == MP_FP_CLASS_FIT_SMALLINT) {
return MP_OBJ_NEW_SMALL_INT((mp_int_t)val);
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "float too big"));
}
}
}
#endif
mp_obj_t mp_obj_new_int(mp_int_t value) {
if (MP_SMALL_INT_FITS(value)) {
return MP_OBJ_NEW_SMALL_INT(value);
}
mp_raise_msg(&mp_type_OverflowError, "small int overflow");
return mp_const_none;
}
mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) {
return MP_OBJ_SMALL_INT_VALUE(self_in);
}
mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) {
return MP_OBJ_SMALL_INT_VALUE(self_in);
}
#endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
// This dispatcher function is expected to be independent of the implementation of long int
// It handles the extra cases for integer-like arithmetic
mp_obj_t mp_obj_int_binary_op_extra_cases(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
if (rhs_in == mp_const_false) {
// false acts as 0
return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0));
} else if (rhs_in == mp_const_true) {
// true acts as 0
return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1));
} else if (op == MP_BINARY_OP_MULTIPLY) {
if (MP_OBJ_IS_STR(rhs_in) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_bytes) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_list)) {
// multiply is commutative for these types, so delegate to them
return mp_binary_op(op, rhs_in, lhs_in);
}
}
return MP_OBJ_NULL; // op not supported
}
// this is a classmethod
STATIC mp_obj_t int_from_bytes(size_t n_args, const mp_obj_t *args) {
// TODO: Support signed param (assumes signed=False at the moment)
(void)n_args;
// get the buffer info
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);
#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
// If result guaranteedly fits in small int, use that
if (bufinfo.len >= sizeof(mp_uint_t) || !MP_SMALL_INT_FITS(1 << (bufinfo.len * 8 - 1))) {
return mp_obj_int_from_bytes_impl(args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little), bufinfo.len, bufinfo.buf);
} else
#endif
{
const byte* buf = (const byte*)bufinfo.buf;
int delta = 1;
if (args[2] == MP_OBJ_NEW_QSTR(MP_QSTR_little)) {
buf += bufinfo.len - 1;
delta = -1;
}
mp_uint_t value = 0;
for (; bufinfo.len--; buf += delta) {
value = (value << 8) | *buf;
}
return mp_obj_new_int_from_uint(value);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 3, 4, int_from_bytes);
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, MP_ROM_PTR(&int_from_bytes_fun_obj));
STATIC mp_obj_t int_to_bytes(size_t n_args, const mp_obj_t *args) {
// TODO: Support byteorder param
// TODO: Support signed param (assumes signed=False)
(void)n_args;
if (args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little)) {
mp_not_implemented("");
}
mp_uint_t len = MP_OBJ_SMALL_INT_VALUE(args[1]);
vstr_t vstr;
vstr_init_len(&vstr, len);
byte *data = (byte*)vstr.buf;
memset(data, 0, len);
#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
if (!MP_OBJ_IS_SMALL_INT(args[0])) {
mp_obj_int_to_bytes_impl(args[0], false, len, data);
} else
#endif
{
mp_int_t val = MP_OBJ_SMALL_INT_VALUE(args[0]);
mp_binary_set_int(MIN((size_t)len, sizeof(val)), false, data, val);
}
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_to_bytes_obj, 3, 4, int_to_bytes);
STATIC const mp_rom_map_elem_t int_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_from_bytes), MP_ROM_PTR(&int_from_bytes_obj) },
{ MP_ROM_QSTR(MP_QSTR_to_bytes), MP_ROM_PTR(&int_to_bytes_obj) },
};
STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table);
const mp_obj_type_t mp_type_int = {
{ &mp_type_type },
.name = MP_QSTR_int,
.print = mp_obj_int_print,
.make_new = mp_obj_int_make_new,
.unary_op = mp_obj_int_unary_op,
.binary_op = mp_obj_int_binary_op,
.locals_dict = (mp_obj_dict_t*)&int_locals_dict,
};