580 lines
19 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Michael Schroeder
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/frequencyio/FrequencyIn.h"
#include <stdint.h>
#include "hal/include/hal_gpio.h"
#include "atmel_start_pins.h"
#include "mpconfigport.h"
#include "py/runtime.h"
#include "timer_handler.h"
#include "background.h"
#include "samd/clocks.h"
#include "samd/timers.h"
#include "samd/events.h"
#include "samd/pins.h"
#include "samd/external_interrupts.h"
#include "peripheral_clk_config.h"
#include "hpl_gclk_config.h"
#include "shared-bindings/time/__init__.h"
#include "supervisor/shared/tick.h"
#include "supervisor/shared/translate.h"
#ifdef SAMD21
#include "hpl/gclk/hpl_gclk_base.h"
#endif
static frequencyio_frequencyin_obj_t *active_frequencyins[TC_INST_NUM];
volatile uint8_t reference_tc;
#ifdef SAM_D5X_E5X
static uint8_t dpll_gclk;
#if !BOARD_HAS_CRYSTAL
static uint8_t osculp32k_gclk;
#endif
#endif
void frequencyin_reset(void) {
for (uint8_t i = 0; i < TC_INST_NUM; i++) {
active_frequencyins[i] = NULL;
}
reference_tc = 0xff;
#ifdef SAM_D5X_E5X
dpll_gclk = 0xff;
#if !BOARD_HAS_CRYSTAL
osculp32k_gclk = 0xff;
#endif
#endif
}
static void frequencyin_emergency_cancel_capture(uint8_t index) {
frequencyio_frequencyin_obj_t* self = active_frequencyins[index];
NVIC_DisableIRQ(self->TC_IRQ);
NVIC_ClearPendingIRQ(self->TC_IRQ);
#ifdef SAMD21
NVIC_DisableIRQ(EIC_IRQn);
NVIC_ClearPendingIRQ(EIC_IRQn);
#endif
#ifdef SAM_D5X_E5X
NVIC_DisableIRQ(EIC_0_IRQn + self->channel);
NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel);
#endif
common_hal_frequencyio_frequencyin_pause(self); // pause any further captures
NVIC_EnableIRQ(self->TC_IRQ);
#ifdef SAMD21
NVIC_EnableIRQ(EIC_IRQn);
#endif
#ifdef SAM_D5X_E5X
NVIC_EnableIRQ(EIC_0_IRQn + self->channel);
#endif
// Frequency captured is above capability. Capture paused.
// We can't raise an error here; we're in an interrupt handler.
}
void frequencyin_interrupt_handler(uint8_t index) {
Tc* ref_tc = tc_insts[reference_tc];
if (!ref_tc->COUNT16.INTFLAG.bit.OVF) return; // false trigger
uint64_t current_ns = common_hal_time_monotonic_ns();
for (uint8_t i = 0; i < TC_INST_NUM; i++) {
if (active_frequencyins[i] != NULL) {
frequencyio_frequencyin_obj_t* self = active_frequencyins[i];
Tc* tc = tc_insts[self->tc_index];
uint32_t mask = 1 << self->channel;
if ((EIC->INTFLAG.reg & mask) == mask) {
// Make sure capture_period has elapsed before we
// record a new event count.
if ((current_ns - self->last_ns) / 1000000 >= self->capture_period) {
// ms difference will not need 64 bits. If we use 64 bits,
// double-precision float routines are required, and we don't
// want to include them because they're very large.
self->factor = (uint32_t) (current_ns - self->last_ns) / 1000000.0;
self->last_ns = current_ns;
#ifdef SAM_D5X_E5X
tc->COUNT16.CTRLBSET.bit.CMD = TC_CTRLBSET_CMD_READSYNC_Val;
while ((tc->COUNT16.SYNCBUSY.bit.COUNT == 1) ||
(tc->COUNT16.CTRLBSET.bit.CMD == TC_CTRLBSET_CMD_READSYNC_Val)) {
}
#endif
uint16_t new_freq = tc->COUNT16.COUNT.reg;
if ((tc->COUNT16.INTFLAG.reg & TC_INTFLAG_OVF) == 1) {
new_freq += 65535;
tc->COUNT16.INTFLAG.reg |= TC_INTFLAG_OVF;
}
self->frequency = new_freq;
#ifdef SAM_D5X_E5X
tc->COUNT16.CTRLBSET.bit.CMD = TC_CTRLBSET_CMD_RETRIGGER_Val;
while ((tc->COUNT16.SYNCBUSY.bit.COUNT == 1) ||
(tc->COUNT16.CTRLBSET.bit.CMD == TC_CTRLBSET_CMD_RETRIGGER_Val)) {
}
#endif
}
EIC->INTFLAG.reg |= mask;
}
// Check if we've reached the upper limit of detection
if (!supervisor_background_tasks_ok() || self->errored_too_fast) {
self->errored_too_fast = true;
frequencyin_emergency_cancel_capture(i);
}
}
}
ref_tc->COUNT16.INTFLAG.reg |= TC_INTFLAG_OVF;
}
static void frequencyin_reference_tc_init(void) {
if (reference_tc == 0xff) {
return;
}
#ifdef SAMD21
set_timer_handler(true, reference_tc, TC_HANDLER_FREQUENCYIN);
turn_on_clocks(true, reference_tc, 0);
#endif
// use the DPLL we setup so that the reference_tc and freqin_tc(s)
// are using the same clock frequency.
#ifdef SAM_D5X_E5X
set_timer_handler(true, reference_tc, TC_HANDLER_FREQUENCYIN);
turn_on_clocks(true, reference_tc, dpll_gclk);
#endif
Tc *tc = tc_insts[reference_tc];
tc_set_enable(tc, false);
tc_reset(tc);
#ifdef SAMD21
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | TC_CTRLA_PRESCALER_DIV1;
tc->COUNT16.INTENSET.reg = TC_INTENSET_OVF;
NVIC_EnableIRQ(TC3_IRQn + reference_tc);
#endif
#ifdef SAM_D5X_E5X
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 |
TC_CTRLA_PRESCALER_DIV1;
tc->COUNT16.INTENSET.reg = TC_INTENSET_OVF;
NVIC_EnableIRQ(TC0_IRQn + reference_tc);
#endif
}
static bool frequencyin_reference_tc_enabled(void) {
if (reference_tc == 0xff) {
return false;
}
Tc *tc = tc_insts[reference_tc];
return tc->COUNT16.CTRLA.bit.ENABLE;
}
static void frequencyin_reference_tc_enable(bool enable) {
if (reference_tc == 0xff) {
return;
}
Tc *tc = tc_insts[reference_tc];
tc_set_enable(tc, enable);
}
#ifdef SAM_D5X_E5X
static bool frequencyin_samd51_start_dpll(void) {
if (clock_get_enabled(0, GCLK_SOURCE_DPLL1)) {
return true;
}
dpll_gclk = find_free_gclk(1);
if (dpll_gclk == 0xff) {
return false;
}
// TC4-7 can only have a max of 100MHz source
// DPLL1 frequency equation with [X]OSC32K as source: 98.304MHz = 32768(2999 + 1 + 0/32)
// Will also enable the Lock Bypass due to low-frequency sources causing DPLL unlocks
// as outlined in the Errata (1.12.1)
OSCCTRL->Dpll[1].DPLLRATIO.reg = OSCCTRL_DPLLRATIO_LDRFRAC(0) | OSCCTRL_DPLLRATIO_LDR(2999);
#if BOARD_HAS_CRYSTAL
// we can use XOSC32K directly as the source. It has already been initialized in clocks.c
OSCCTRL->Dpll[1].DPLLCTRLB.reg =
OSCCTRL_DPLLCTRLB_REFCLK(OSCCTRL_DPLLCTRLB_REFCLK_XOSC32_Val) | OSCCTRL_DPLLCTRLB_LBYPASS;
#else
// We can't use OSCULP32K directly. Set up a GCLK controlled by it
// Then use that GCLK as the reference oscillator for the DPLL.
osculp32k_gclk = find_free_gclk(1);
if (osculp32k_gclk == 0xff) {
return false;
}
enable_clock_generator(osculp32k_gclk, GCLK_GENCTRL_SRC_OSCULP32K_Val, 1);
GCLK->PCHCTRL[OSCCTRL_GCLK_ID_FDPLL1].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(OSCCTRL_GCLK_ID_FDPLL1);
OSCCTRL->Dpll[1].DPLLCTRLB.reg =
OSCCTRL_DPLLCTRLB_REFCLK(OSCCTRL_DPLLCTRLB_REFCLK_GCLK_Val) | OSCCTRL_DPLLCTRLB_LBYPASS;
#endif
OSCCTRL->Dpll[1].DPLLCTRLA.reg = OSCCTRL_DPLLCTRLA_ENABLE;
while (!(OSCCTRL->Dpll[1].DPLLSTATUS.bit.LOCK || OSCCTRL->Dpll[1].DPLLSTATUS.bit.CLKRDY)) {}
enable_clock_generator(dpll_gclk, GCLK_GENCTRL_SRC_DPLL1_Val, 1);
return true;
}
static void frequencyin_samd51_stop_dpll(void) {
if (!clock_get_enabled(0, GCLK_SOURCE_DPLL1)) {
return;
}
if (dpll_gclk != 0xff) {
disable_clock_generator(dpll_gclk);
dpll_gclk = 0xff;
}
#if !BOARD_HAS_CRYSTAL
if (osculp32k_gclk != 0xff) {
disable_clock_generator(osculp32k_gclk);
osculp32k_gclk = 0xff;
}
#endif
GCLK->PCHCTRL[OSCCTRL_GCLK_ID_FDPLL1].reg = 0;
OSCCTRL->Dpll[1].DPLLCTRLA.reg = 0;
OSCCTRL->Dpll[1].DPLLRATIO.reg = 0;
OSCCTRL->Dpll[1].DPLLCTRLB.reg = 0;
while (OSCCTRL->Dpll[1].DPLLSYNCBUSY.bit.ENABLE) {
}
}
#endif
void common_hal_frequencyio_frequencyin_construct(frequencyio_frequencyin_obj_t* self, const mcu_pin_obj_t* pin, const uint16_t capture_period) {
if (!pin->has_extint) {
mp_raise_RuntimeError(translate("No hardware support on pin"));
}
if ((capture_period == 0) || (capture_period > 500)) {
mp_raise_ValueError(translate("Invalid capture period. Valid range: 1 - 500"));
}
uint32_t mask = 1 << pin->extint_channel;
if (eic_get_enable() == 1 &&
#ifdef SAMD21
((EIC->INTENSET.vec.EXTINT & mask) != 0 || (EIC->EVCTRL.vec.EXTINTEO & mask) != 0)) {
#endif
#ifdef SAM_D5X_E5X
((EIC->INTENSET.bit.EXTINT & mask) != 0 || (EIC->EVCTRL.bit.EXTINTEO & mask) != 0)) {
#endif
mp_raise_RuntimeError(translate("EXTINT channel already in use"));
}
uint8_t timer_index = find_free_timer();
if (timer_index == 0xff) {
mp_raise_RuntimeError(translate("All timers in use"));
}
Tc *tc = tc_insts[timer_index];
self->tc_index = timer_index;
self->pin = pin->number;
self->channel = pin->extint_channel;
self->errored_too_fast = false;
self->last_ns = 0;
self->capture_period = capture_period;
#ifdef SAMD21
self->TC_IRQ = TC3_IRQn + timer_index;
#endif
#ifdef SAM_D5X_E5X
self->TC_IRQ = TC0_IRQn + timer_index;
#endif
active_frequencyins[timer_index] = self;
// SAMD21: We use GCLK0 generated from DFLL running at 48mhz
// SAMD51: We use a GCLK generated from DPLL1 running at <100mhz
#ifdef SAMD21
set_timer_handler(timer_index, 0, TC_HANDLER_NO_INTERRUPT);
turn_on_clocks(true, timer_index, 0);
#endif
#ifdef SAM_D5X_E5X
frequencyin_samd51_start_dpll();
if (dpll_gclk == 0xff && !clock_get_enabled(0, GCLK_SOURCE_DPLL1)) {
common_hal_frequencyio_frequencyin_deinit(self);
mp_raise_RuntimeError(translate("No available clocks"));
}
set_timer_handler(timer_index, dpll_gclk, TC_HANDLER_NO_INTERRUPT);
turn_on_clocks(true, timer_index, dpll_gclk);
#endif
// Ensure EIC is on
if (eic_get_enable() == 0) {
turn_on_external_interrupt_controller(); // enables EIC, so disable it after
}
eic_set_enable(false);
uint8_t sense_setting = EIC_CONFIG_SENSE0_HIGH_Val;
uint8_t config_index = self->channel / 8;
uint8_t position = (self->channel % 8) * 4;
uint32_t masked_value = EIC->CONFIG[config_index].reg & ~(0xf << position);
EIC->CONFIG[config_index].reg = masked_value | (sense_setting << position);
#ifdef SAMD21
masked_value = EIC->EVCTRL.vec.EXTINTEO;
EIC->EVCTRL.vec.EXTINTEO = masked_value | (1 << self->channel);
#endif
#ifdef SAM_D5X_E5X
masked_value = EIC->EVCTRL.bit.EXTINTEO;
EIC->EVCTRL.bit.EXTINTEO = masked_value | (1 << self->channel);
EIC->ASYNCH.bit.ASYNCH = 1;
#endif
turn_on_cpu_interrupt(self->channel);
eic_set_enable(true);
// Turn on EVSYS
turn_on_event_system();
uint8_t evsys_channel = find_async_event_channel();
#ifdef SAMD21
connect_event_user_to_channel((EVSYS_ID_USER_TC3_EVU + timer_index), evsys_channel);
#endif
#ifdef SAM_D5X_E5X
connect_event_user_to_channel((EVSYS_ID_USER_TC0_EVU + timer_index), evsys_channel);
#endif
init_async_event_channel(evsys_channel, (EVSYS_ID_GEN_EIC_EXTINT_0 + self->channel));
self->event_channel = evsys_channel;
tc_set_enable(tc, false);
tc_reset(tc);
#ifdef SAMD21
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 |
TC_CTRLA_PRESCALER_DIV1;
tc->COUNT16.EVCTRL.bit.TCEI = 1;
tc->COUNT16.EVCTRL.bit.EVACT = TC_EVCTRL_EVACT_COUNT_Val;
#endif
#ifdef SAM_D5X_E5X
tc->COUNT16.EVCTRL.reg = TC_EVCTRL_EVACT(TC_EVCTRL_EVACT_COUNT_Val) | TC_EVCTRL_TCEI;
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 |
TC_CTRLA_PRESCALER_DIV1;
#endif
NVIC_EnableIRQ(self->TC_IRQ);
gpio_set_pin_function(pin->number, GPIO_PIN_FUNCTION_A);
tc_set_enable(tc, true);
// setup reference TC if not already
if (reference_tc == 0xff) {
reference_tc = find_free_timer();
if (reference_tc == 0xff) {
common_hal_frequencyio_frequencyin_deinit(self);
mp_raise_RuntimeError(translate("All timers in use"));
}
frequencyin_reference_tc_init();
}
if (!frequencyin_reference_tc_enabled()) {
frequencyin_reference_tc_enable(true);
}
}
bool common_hal_frequencyio_frequencyin_deinited(frequencyio_frequencyin_obj_t* self) {
return self->pin == NO_PIN;
}
void common_hal_frequencyio_frequencyin_deinit(frequencyio_frequencyin_obj_t* self) {
if (common_hal_frequencyio_frequencyin_deinited(self)) {
return;
}
reset_pin_number(self->pin);
// turn off EIC & EVSYS utilized by this TC
disable_event_channel(self->event_channel);
eic_set_enable(false);
#ifdef SAMD21
disable_event_user(EVSYS_ID_USER_TC3_EVU + self->tc_index);
uint32_t masked_value = EIC->EVCTRL.vec.EXTINTEO;
EIC->EVCTRL.vec.EXTINTEO = masked_value ^ (1 << self->channel);
#endif
#ifdef SAM_D5X_E5X
disable_event_user(EVSYS_ID_USER_TC0_EVU + self->tc_index);
uint32_t masked_value = EIC->EVCTRL.bit.EXTINTEO;
EIC->EVCTRL.bit.EXTINTEO = masked_value ^ (1 << self->channel);
NVIC_DisableIRQ(EIC_0_IRQn + self->channel);
NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel);
#endif
eic_set_enable(true);
// check if any other objects are using the EIC; if not, turn it off
if (EIC->EVCTRL.reg == 0 && EIC->INTENSET.reg == 0) {
eic_reset();
turn_off_external_interrupt_controller();
}
// turn off the TC we were using
Tc *tc = tc_insts[self->tc_index];
tc_set_enable(tc, false);
tc_reset(tc);
NVIC_DisableIRQ(self->TC_IRQ);
NVIC_ClearPendingIRQ(self->TC_IRQ);
active_frequencyins[self->tc_index] = NULL;
self->tc_index = 0xff;
self->pin = NO_PIN;
bool check_active = false;
for (uint8_t i = 0; i < TC_INST_NUM; i++) {
if (active_frequencyins[i] != NULL) {
check_active = true;
}
}
if (!check_active) {
frequencyin_reference_tc_enable(false);
reference_tc = 0xff;
#ifdef SAM_D5X_E5X
frequencyin_samd51_stop_dpll();
#endif
}
}
uint32_t common_hal_frequencyio_frequencyin_get_item(frequencyio_frequencyin_obj_t* self) {
NVIC_DisableIRQ(self->TC_IRQ);
#ifdef SAMD21
NVIC_DisableIRQ(EIC_IRQn);
#endif
#ifdef SAM_D5X_E5X
NVIC_DisableIRQ(EIC_0_IRQn + self->channel);
#endif
// adjust for actual capture period vs base `capture_period`
float frequency_adjustment = 0.0;
if (self->factor > self->capture_period) {
float time_each_event = self->factor / self->frequency; // get the time for each event during actual period
float capture_diff = self->factor - self->capture_period; // get the difference of actual and base periods
// we only need to adjust if the capture_diff can contain 1 or more events
// if so, we add how many events could have occured during the diff time
if (time_each_event > capture_diff) {
frequency_adjustment = capture_diff / time_each_event;
}
}
float value = 1000 / (self->capture_period / (self->frequency + frequency_adjustment));
NVIC_ClearPendingIRQ(self->TC_IRQ);
NVIC_EnableIRQ(self->TC_IRQ);
#ifdef SAMD21
NVIC_ClearPendingIRQ(EIC_IRQn);
NVIC_EnableIRQ(EIC_IRQn);
#endif
#ifdef SAM_D5X_E5X
NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel);
NVIC_EnableIRQ(EIC_0_IRQn + self->channel);
#endif
return value;
}
void common_hal_frequencyio_frequencyin_pause(frequencyio_frequencyin_obj_t* self) {
Tc *tc = tc_insts[self->tc_index];
if (!tc->COUNT16.EVCTRL.bit.TCEI) {
return;
}
tc->COUNT16.EVCTRL.bit.TCEI = 0;
#ifdef SAMD21
uint32_t masked_value = EIC->EVCTRL.vec.EXTINTEO;
EIC->EVCTRL.vec.EXTINTEO = masked_value ^ (1 << self->channel);
#endif
#ifdef SAM_D5X_E5X
uint32_t masked_value = EIC->EVCTRL.bit.EXTINTEO;
EIC->EVCTRL.bit.EXTINTEO = masked_value ^ (1 << self->channel);
#endif
return;
}
void common_hal_frequencyio_frequencyin_resume(frequencyio_frequencyin_obj_t* self) {
Tc *tc = tc_insts[self->tc_index];
if (tc->COUNT16.EVCTRL.bit.TCEI) {
return;
}
tc->COUNT16.EVCTRL.bit.TCEI = 1;
#ifdef SAMD21
uint32_t masked_value = EIC->EVCTRL.vec.EXTINTEO;
EIC->EVCTRL.vec.EXTINTEO = masked_value | (1 << self->channel);
#endif
#ifdef SAM_D5X_E5X
uint32_t masked_value = EIC->EVCTRL.bit.EXTINTEO;
EIC->EVCTRL.bit.EXTINTEO = masked_value | (1 << self->channel);
#endif
self->errored_too_fast = false;
return;
}
void common_hal_frequencyio_frequencyin_clear(frequencyio_frequencyin_obj_t* self) {
NVIC_DisableIRQ(self->TC_IRQ);
#ifdef SAMD21
NVIC_DisableIRQ(EIC_IRQn);
#endif
#ifdef SAM_D5X_E5X
NVIC_DisableIRQ(EIC_0_IRQn + self->channel);
#endif
self->frequency = 0;
NVIC_ClearPendingIRQ(self->TC_IRQ);
NVIC_EnableIRQ(self->TC_IRQ);
#ifdef SAMD21
NVIC_ClearPendingIRQ(EIC_IRQn);
NVIC_EnableIRQ(EIC_IRQn);
#endif
#ifdef SAM_D5X_E5X
NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel);
NVIC_EnableIRQ(EIC_0_IRQn + self->channel);
#endif
return;
}
uint16_t common_hal_frequencyio_frequencyin_get_capture_period(frequencyio_frequencyin_obj_t *self) {
return self->capture_period;
}
void common_hal_frequencyio_frequencyin_set_capture_period(frequencyio_frequencyin_obj_t *self, uint16_t capture_period) {
if ((capture_period == 0) || (capture_period > 500)) {
mp_raise_ValueError(translate("Invalid capture period. Valid range: 1 - 500"));
}
self->capture_period = capture_period;
common_hal_frequencyio_frequencyin_clear(self);
}