circuitpython/py/parsenum.c
Damien George 7d414a1b52 py: Parse big-int/float/imag constants directly in parser.
Previous to this patch, a big-int, float or imag constant was interned
(made into a qstr) and then parsed at runtime to create an object each
time it was needed.  This is wasteful in RAM and not efficient.  Now,
these constants are parsed straight away in the parser and turned into
objects.  This allows constants with large numbers of digits (so
addresses issue #1103) and takes us a step closer to #722.
2015-02-08 01:57:40 +00:00

304 lines
9.0 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include <stdlib.h>
#include "py/nlr.h"
#include "py/parsenum.h"
#include "py/smallint.h"
#if MICROPY_PY_BUILTINS_FLOAT
#include <math.h>
#endif
STATIC NORETURN void raise(mp_obj_t exc, mp_lexer_t *lex) {
// if lex!=NULL then the parser called us and we need to make a SyntaxError with traceback
if (lex != NULL) {
((mp_obj_base_t*)exc)->type = &mp_type_SyntaxError;
mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL);
}
nlr_raise(exc);
}
mp_obj_t mp_parse_num_integer(const char *restrict str_, mp_uint_t len, mp_uint_t base, mp_lexer_t *lex) {
const byte *restrict str = (const byte *)str_;
const byte *restrict top = str + len;
bool neg = false;
mp_obj_t ret_val;
// check radix base
if ((base != 0 && base < 2) || base > 36) {
// this won't be reached if lex!=NULL
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "int() arg 2 must be >= 2 and <= 36"));
}
// skip leading space
for (; str < top && unichar_isspace(*str); str++) {
}
// parse optional sign
if (str < top) {
if (*str == '+') {
str++;
} else if (*str == '-') {
str++;
neg = true;
}
}
// parse optional base prefix
str += mp_parse_num_base((const char*)str, top - str, &base);
// string should be an integer number
mp_int_t int_val = 0;
const byte *restrict str_val_start = str;
for (; str < top; str++) {
// get next digit as a value
mp_uint_t dig = *str;
if (unichar_isdigit(dig) && dig - '0' < base) {
// 0-9 digit
dig = dig - '0';
} else if (base == 16) {
dig |= 0x20;
if ('a' <= dig && dig <= 'f') {
// a-f hex digit
dig = dig - 'a' + 10;
} else {
// unknown character
break;
}
} else {
// unknown character
break;
}
// add next digi and check for overflow
if (mp_small_int_mul_overflow(int_val, base)) {
goto overflow;
}
int_val = int_val * base + dig;
if (!MP_SMALL_INT_FITS(int_val)) {
goto overflow;
}
}
// negate value if needed
if (neg) {
int_val = -int_val;
}
// create the small int
ret_val = MP_OBJ_NEW_SMALL_INT(int_val);
have_ret_val:
// check we parsed something
if (str == str_val_start) {
goto value_error;
}
// skip trailing space
for (; str < top && unichar_isspace(*str); str++) {
}
// check we reached the end of the string
if (str != top) {
goto value_error;
}
// return the object
return ret_val;
overflow:
// reparse using long int
{
const char *s2 = (const char*)str_val_start;
ret_val = mp_obj_new_int_from_str_len(&s2, top - str_val_start, neg, base);
str = (const byte*)s2;
goto have_ret_val;
}
value_error:
// if lex!=NULL then the parser called us and we need to make a SyntaxError with traceback
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
"invalid syntax for integer");
raise(exc, lex);
} else {
mp_obj_t exc = mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"invalid syntax for integer with base %d: '%s'", base, str_val_start);
raise(exc, lex);
}
}
typedef enum {
PARSE_DEC_IN_INTG,
PARSE_DEC_IN_FRAC,
PARSE_DEC_IN_EXP,
} parse_dec_in_t;
mp_obj_t mp_parse_num_decimal(const char *str, mp_uint_t len, bool allow_imag, bool force_complex, mp_lexer_t *lex) {
#if MICROPY_PY_BUILTINS_FLOAT
const char *top = str + len;
mp_float_t dec_val = 0;
bool dec_neg = false;
bool imag = false;
// skip leading space
for (; str < top && unichar_isspace(*str); str++) {
}
// parse optional sign
if (str < top) {
if (*str == '+') {
str++;
} else if (*str == '-') {
str++;
dec_neg = true;
}
}
const char *str_val_start = str;
// determine what the string is
if (str < top && (str[0] | 0x20) == 'i') {
// string starts with 'i', should be 'inf' or 'infinity' (case insensitive)
if (str + 2 < top && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'f') {
// inf
str += 3;
dec_val = INFINITY;
if (str + 4 < top && (str[0] | 0x20) == 'i' && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'i' && (str[3] | 0x20) == 't' && (str[4] | 0x20) == 'y') {
// infinity
str += 5;
}
}
} else if (str < top && (str[0] | 0x20) == 'n') {
// string starts with 'n', should be 'nan' (case insensitive)
if (str + 2 < top && (str[1] | 0x20) == 'a' && (str[2] | 0x20) == 'n') {
// NaN
str += 3;
dec_val = MICROPY_FLOAT_C_FUN(nan)("");
}
} else {
// string should be a decimal number
parse_dec_in_t in = PARSE_DEC_IN_INTG;
bool exp_neg = false;
mp_float_t frac_mult = 0.1;
mp_int_t exp_val = 0;
while (str < top) {
mp_uint_t dig = *str++;
if ('0' <= dig && dig <= '9') {
dig -= '0';
if (in == PARSE_DEC_IN_EXP) {
exp_val = 10 * exp_val + dig;
} else {
if (in == PARSE_DEC_IN_FRAC) {
dec_val += dig * frac_mult;
frac_mult *= 0.1;
} else {
dec_val = 10 * dec_val + dig;
}
}
} else if (in == PARSE_DEC_IN_INTG && dig == '.') {
in = PARSE_DEC_IN_FRAC;
} else if (in != PARSE_DEC_IN_EXP && ((dig | 0x20) == 'e')) {
in = PARSE_DEC_IN_EXP;
if (str < top) {
if (str[0] == '+') {
str++;
} else if (str[0] == '-') {
str++;
exp_neg = true;
}
}
if (str == top) {
goto value_error;
}
} else if (allow_imag && (dig | 0x20) == 'j') {
imag = true;
break;
} else {
// unknown character
str--;
break;
}
}
// work out the exponent
if (exp_neg) {
exp_val = -exp_val;
}
// apply the exponent
for (; exp_val > 0; exp_val--) {
dec_val *= 10;
}
for (; exp_val < 0; exp_val++) {
dec_val *= 0.1;
}
}
// negate value if needed
if (dec_neg) {
dec_val = -dec_val;
}
// check we parsed something
if (str == str_val_start) {
goto value_error;
}
// skip trailing space
for (; str < top && unichar_isspace(*str); str++) {
}
// check we reached the end of the string
if (str != top) {
goto value_error;
}
// return the object
#if MICROPY_PY_BUILTINS_COMPLEX
if (imag) {
return mp_obj_new_complex(0, dec_val);
} else if (force_complex) {
return mp_obj_new_complex(dec_val, 0);
#else
if (imag || force_complex) {
raise(mp_obj_new_exception_msg(&mp_type_ValueError, "complex values not supported"), lex);
#endif
} else {
return mp_obj_new_float(dec_val);
}
value_error:
raise(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid syntax for number"), lex);
#else
raise(mp_obj_new_exception_msg(&mp_type_ValueError, "decimal numbers not supported"), lex);
#endif
}