circuitpython/atmel-samd/spi_flash.c
Scott Shawcroft ccbb5e84f9 This introduces an alternative hardware API called nativeio structured around different functions that are typically accelerated by native hardware. Its not meant to reflect the structure of the hardware.
Docs are here: http://tannewt-micropython.readthedocs.io/en/microcontroller/

It differs from upstream's machine in the following ways:

* Python API is identical across ports due to code structure. (Lives in shared-bindings)
* Focuses on abstracting common functionality (AnalogIn) and not representing structure (ADC).
* Documentation lives with code making it easy to ensure they match.
* Pin is split into references (board.D13 and microcontroller.pin.PA17) and functionality (DigitalInOut).
* All nativeio classes claim underlying hardware resources when inited on construction, support Context Managers (aka with statements) and have deinit methods which release the claimed hardware.
* All constructors take pin references rather than peripheral ids. Its up to the implementation to find hardware or throw and exception.
2016-11-21 14:11:52 -08:00

663 lines
24 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "spi_flash.h"
#include <stdint.h>
#include <string.h>
#include "asf/sam0/drivers/sercom/spi/spi.h"
#include "py/gc.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "lib/fatfs/ff.h"
#include "extmod/fsusermount.h"
#include "neopixel_status.h"
#define SPI_FLASH_PART1_START_BLOCK (0x1)
#define NO_SECTOR_LOADED 0xFFFFFFFF
#define CMD_READ_JEDEC_ID 0x9f
#define CMD_READ_DATA 0x03
#define CMD_SECTOR_ERASE 0x20
// #define CMD_SECTOR_ERASE CMD_READ_JEDEC_ID
#define CMD_ENABLE_WRITE 0x06
#define CMD_PAGE_PROGRAM 0x02
// #define CMD_PAGE_PROGRAM CMD_READ_JEDEC_ID
#define CMD_READ_STATUS 0x05
static bool spi_flash_is_initialised = false;
struct spi_module spi_flash_instance;
// The total size of the flash.
static uint32_t flash_size;
// The erase sector size.
static uint32_t sector_size;
// The page size. Its the maximum number of bytes that can be written at once.
static uint32_t page_size;
// The currently cached sector in the cache, ram or flash based.
static uint32_t current_sector;
// Track which blocks (up to 32) in the current sector currently live in the
// cache.
static uint32_t dirty_mask;
// We use this when we can allocate the whole cache in RAM.
static uint8_t** ram_cache;
// Address of the scratch flash sector.
#define SCRATCH_SECTOR (flash_size - sector_size)
// Enable the flash over SPI.
static void flash_enable(void) {
port_pin_set_output_level(SPI_FLASH_CS, false);
}
// Disable the flash over SPI.
static void flash_disable(void) {
port_pin_set_output_level(SPI_FLASH_CS, true);
}
// Wait until both the write enable and write in progress bits have cleared.
static bool wait_for_flash_ready(void) {
uint8_t status_request[2] = {CMD_READ_STATUS, 0x00};
uint8_t response[2] = {0x00, 0x01};
enum status_code status = STATUS_OK;
// Both the write enable and write in progress bits should be low.
while (status == STATUS_OK && ((response[1] & 0x1) == 1 || (response[1] & 0x2) == 2)) {
flash_enable();
status = spi_transceive_buffer_wait(&spi_flash_instance, status_request, response, 2);
flash_disable();
}
return status == STATUS_OK;
}
// Turn on the write enable bit so we can program and erase the flash.
static bool write_enable(void) {
flash_enable();
uint8_t command = CMD_ENABLE_WRITE;
enum status_code status = spi_write_buffer_wait(&spi_flash_instance, &command, 1);
flash_disable();
return status == STATUS_OK;
}
// Pack the low 24 bits of the address into a uint8_t array.
static void address_to_bytes(uint32_t address, uint8_t* bytes) {
bytes[0] = (address >> 16) & 0xff;
bytes[1] = (address >> 8) & 0xff;
bytes[2] = address & 0xff;
}
// Read data_length's worth of bytes starting at address into data.
static bool read_flash(uint32_t address, uint8_t* data, uint32_t data_length) {
wait_for_flash_ready();
enum status_code status;
// We can read as much as we want sequentially.
uint8_t read_request[4] = {CMD_READ_DATA, 0x00, 0x00, 0x00};
address_to_bytes(address, read_request + 1);
flash_enable();
status = spi_write_buffer_wait(&spi_flash_instance, read_request, 4);
if (status == STATUS_OK) {
status = spi_read_buffer_wait(&spi_flash_instance, data, data_length, 0x00);
}
flash_disable();
return status == STATUS_OK;
}
// Writes data_length's worth of bytes starting at address from data. Assumes
// that the sector that address resides in has already been erased. So make sure
// to run erase_sector.
static bool write_flash(uint32_t address, const uint8_t* data, uint32_t data_length) {
if (page_size == 0) {
return false;
}
for (uint32_t bytes_written = 0;
bytes_written < data_length;
bytes_written += page_size) {
if (!wait_for_flash_ready() || !write_enable()) {
return false;
}
flash_enable();
uint8_t command[4] = {CMD_PAGE_PROGRAM, 0x00, 0x00, 0x00};
address_to_bytes(address + bytes_written, command + 1);
enum status_code status;
status = spi_write_buffer_wait(&spi_flash_instance, command, 4);
if (status == STATUS_OK) {
status = spi_write_buffer_wait(&spi_flash_instance, data + bytes_written, page_size);
}
flash_disable();
if (status != STATUS_OK) {
return false;
}
}
return true;
}
// Erases the given sector. Make sure you copied all of the data out of it you
// need! Also note, sector_address is really 24 bits.
static bool erase_sector(uint32_t sector_address) {
// Before we erase the sector we need to wait for any writes to finish and
// and then enable the write again.
if (!wait_for_flash_ready() || !write_enable()) {
return false;
}
uint8_t erase_request[4] = {CMD_SECTOR_ERASE, 0x00, 0x00, 0x00};
address_to_bytes(sector_address, erase_request + 1);
flash_enable();
enum status_code status = spi_write_buffer_wait(&spi_flash_instance, erase_request, 4);
flash_disable();
return status == STATUS_OK;
}
// Sector is really 24 bits.
static bool copy_block(uint32_t src_address, uint32_t dest_address) {
// Copy page by page to minimize RAM buffer.
uint8_t buffer[page_size];
for (uint32_t i = 0; i < FLASH_BLOCK_SIZE / page_size; i++) {
if (!read_flash(src_address + i * page_size, buffer, page_size)) {
return false;
}
if (!write_flash(dest_address + i * page_size, buffer, page_size)) {
return false;
}
}
return true;
}
void spi_flash_init(void) {
if (!spi_flash_is_initialised) {
struct spi_config config_spi_master;
spi_get_config_defaults(&config_spi_master);
config_spi_master.mux_setting = SPI_FLASH_MUX_SETTING;
config_spi_master.pinmux_pad0 = SPI_FLASH_PAD0_PINMUX;
config_spi_master.pinmux_pad1 = SPI_FLASH_PAD1_PINMUX;
config_spi_master.pinmux_pad2 = SPI_FLASH_PAD2_PINMUX;
config_spi_master.pinmux_pad3 = SPI_FLASH_PAD3_PINMUX;
config_spi_master.mode_specific.master.baudrate = SPI_FLASH_BAUDRATE;
spi_init(&spi_flash_instance, SPI_FLASH_SERCOM, &config_spi_master);
spi_enable(&spi_flash_instance);
// Manage chip select ourselves.
struct port_config pin_conf;
port_get_config_defaults(&pin_conf);
pin_conf.direction = PORT_PIN_DIR_OUTPUT;
port_pin_set_config(SPI_FLASH_CS, &pin_conf);
flash_disable();
// Activity LED for flash writes.
#ifdef MICROPY_HW_LED_MSC
port_pin_set_config(MICROPY_HW_LED_MSC, &pin_conf);
port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
#endif
uint8_t jedec_id_request[4] = {CMD_READ_JEDEC_ID, 0x00, 0x00, 0x00};
uint8_t response[4] = {0x00, 0x00, 0x00, 0x00};
flash_enable();
volatile enum status_code status = spi_transceive_buffer_wait(&spi_flash_instance, jedec_id_request, response, 4);
flash_disable();
(void) status;
if (response[1] == 0x01 && response[2] == 0x40 && response[3] == 0x15) {
flash_size = 1 << 21; // 2 MiB
sector_size = 1 << 12; // 4 KiB
page_size = 256; // 256 bytes
} else {
// Unknown flash chip!
flash_size = 0;
}
current_sector = NO_SECTOR_LOADED;
dirty_mask = 0;
ram_cache = NULL;
spi_flash_is_initialised = true;
}
}
// The size of each individual block.
uint32_t spi_flash_get_block_size(void) {
return FLASH_BLOCK_SIZE;
}
// The total number of available blocks.
uint32_t spi_flash_get_block_count(void) {
// We subtract one erase sector size because we may use it as a staging area
// for writes.
return SPI_FLASH_PART1_START_BLOCK + (flash_size - sector_size) / FLASH_BLOCK_SIZE;
}
// Flush the cache that was written to the scratch portion of flash. Only used
// when ram is tight.
static bool flush_scratch_flash(void) {
// First, copy out any blocks that we haven't touched from the sector we've
// cached.
bool copy_to_scratch_ok = true;
for (uint8_t i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
if ((dirty_mask & (1 << i)) == 0) {
copy_to_scratch_ok = copy_to_scratch_ok &&
copy_block(current_sector + i * FLASH_BLOCK_SIZE,
SCRATCH_SECTOR + i * FLASH_BLOCK_SIZE);
}
}
if (!copy_to_scratch_ok) {
// TODO(tannewt): Do more here. We opted to not erase and copy bad data
// in. We still risk losing the data written to the scratch sector.
return false;
}
// Second, erase the current sector.
erase_sector(current_sector);
// Finally, copy the new version into it.
for (uint8_t i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
copy_block(SCRATCH_SECTOR + i * FLASH_BLOCK_SIZE,
current_sector + i * FLASH_BLOCK_SIZE);
}
return true;
}
// Attempts to allocate a new set of page buffers for caching a full sector in
// ram. Each page is allocated separately so that the GC doesn't need to provide
// one huge block. We can free it as we write if we want to also.
static bool allocate_ram_cache(void) {
uint8_t blocks_per_sector = sector_size / FLASH_BLOCK_SIZE;
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
ram_cache = gc_alloc(blocks_per_sector * pages_per_block * sizeof(uint32_t), false);
if (ram_cache == NULL) {
return false;
}
// Declare i and j outside the loops in case we fail to allocate everything
// we need. In that case we'll give it back.
uint8_t i = 0;
uint8_t j = 0;
bool success = true;
for (i = 0; i < blocks_per_sector; i++) {
for (j = 0; j < pages_per_block; j++) {
uint8_t *page_cache = gc_alloc(page_size, false);
if (page_cache == NULL) {
success = false;
break;
}
ram_cache[i * pages_per_block + j] = page_cache;
}
if (!success) {
break;
}
}
// We couldn't allocate enough so give back what we got.
if (!success) {
// We add 1 so that we delete 0 when i is 1. Going to zero (i >= 0)
// would never stop because i is unsigned.
i++;
for (; i > 0; i--) {
for (; j > 0; j--) {
gc_free(ram_cache[(i - 1) * pages_per_block + (j - 1)]);
}
j = pages_per_block;
}
gc_free(ram_cache);
ram_cache = NULL;
}
return success;
}
// Flush the cached sector from ram onto the flash. We'll free the cache unless
// keep_cache is true.
static bool flush_ram_cache(bool keep_cache) {
// First, copy out any blocks that we haven't touched from the sector
// we've cached. If we don't do this we'll erase the data during the sector
// erase below.
bool copy_to_ram_ok = true;
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
for (uint8_t i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
if ((dirty_mask & (1 << i)) == 0) {
for (uint8_t j = 0; j < pages_per_block; j++) {
copy_to_ram_ok = read_flash(
current_sector + (i * pages_per_block + j) * page_size,
ram_cache[i * pages_per_block + j],
page_size);
if (!copy_to_ram_ok) {
break;
}
}
}
if (!copy_to_ram_ok) {
break;
}
}
if (!copy_to_ram_ok) {
return false;
}
// Second, erase the current sector.
erase_sector(current_sector);
// Lastly, write all the data in ram that we've cached.
for (uint8_t i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
for (uint8_t j = 0; j < pages_per_block; j++) {
write_flash(current_sector + (i * pages_per_block + j) * page_size,
ram_cache[i * pages_per_block + j],
page_size);
if (!keep_cache) {
gc_free(ram_cache[i * pages_per_block + j]);
}
}
}
// We're done with the cache for now so give it back.
if (!keep_cache) {
gc_free(ram_cache);
ram_cache = NULL;
}
return true;
}
// Delegates to the correct flash flush method depending on the existing cache.
static void spi_flash_flush_keep_cache(bool keep_cache) {
if (current_sector == NO_SECTOR_LOADED) {
return;
}
#ifdef MICROPY_HW_LED_MSC
port_pin_set_output_level(MICROPY_HW_LED_MSC, true);
#endif
#ifdef MICROPY_HW_NEOPIXEL
temp_status_color(0x8f, 0x00, 0x00);
#endif
// If we've cached to the flash itself flush from there.
if (ram_cache == NULL) {
flush_scratch_flash();
} else {
flush_ram_cache(keep_cache);
}
current_sector = NO_SECTOR_LOADED;
#ifdef MICROPY_HW_NEOPIXEL
clear_temp_status();
#endif
#ifdef MICROPY_HW_LED_MSC
port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
#endif
}
// External flash function used. If called externally we assume we won't need
// the cache after.
void spi_flash_flush(void) {
spi_flash_flush_keep_cache(false);
}
// Builds a partition entry for the MBR.
static void build_partition(uint8_t *buf, int boot, int type,
uint32_t start_block, uint32_t num_blocks) {
buf[0] = boot;
if (num_blocks == 0) {
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
} else {
buf[1] = 0xff;
buf[2] = 0xff;
buf[3] = 0xff;
}
buf[4] = type;
if (num_blocks == 0) {
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
} else {
buf[5] = 0xff;
buf[6] = 0xff;
buf[7] = 0xff;
}
buf[8] = start_block;
buf[9] = start_block >> 8;
buf[10] = start_block >> 16;
buf[11] = start_block >> 24;
buf[12] = num_blocks;
buf[13] = num_blocks >> 8;
buf[14] = num_blocks >> 16;
buf[15] = num_blocks >> 24;
}
static int32_t convert_block_to_flash_addr(uint32_t block) {
if (SPI_FLASH_PART1_START_BLOCK <= block && block < spi_flash_get_block_count()) {
// a block in partition 1
block -= SPI_FLASH_PART1_START_BLOCK;
return block * FLASH_BLOCK_SIZE;
}
// bad block
return -1;
}
bool spi_flash_read_block(uint8_t *dest, uint32_t block) {
if (block == 0) {
// Fake the MBR so we can decide on our own partition table
for (int i = 0; i < 446; i++) {
dest[i] = 0;
}
build_partition(dest + 446, 0, 0x01 /* FAT12 */,
SPI_FLASH_PART1_START_BLOCK,
spi_flash_get_block_count() - SPI_FLASH_PART1_START_BLOCK);
build_partition(dest + 462, 0, 0, 0, 0);
build_partition(dest + 478, 0, 0, 0, 0);
build_partition(dest + 494, 0, 0, 0, 0);
dest[510] = 0x55;
dest[511] = 0xaa;
return true;
} else if (block < SPI_FLASH_PART1_START_BLOCK) {
memset(dest, 0, FLASH_BLOCK_SIZE);
return true;
} else {
// Non-MBR block, get data from flash memory.
int32_t address = convert_block_to_flash_addr(block);
if (address == -1) {
// bad block number
return false;
}
// Mask out the lower bits that designate the address within the sector.
uint32_t this_sector = address & (~(sector_size - 1));
uint8_t block_index = (address / FLASH_BLOCK_SIZE) % (sector_size / FLASH_BLOCK_SIZE);
uint8_t mask = 1 << (block_index);
// We're reading from the currently cached sector.
if (current_sector == this_sector && (mask & dirty_mask) > 0) {
if (ram_cache != NULL) {
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
for (int i = 0; i < pages_per_block; i++) {
memcpy(dest + i * page_size,
ram_cache[block_index * pages_per_block + i],
page_size);
}
return true;
} else {
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FLASH_BLOCK_SIZE;
return read_flash(scratch_address, dest, FLASH_BLOCK_SIZE);
}
}
return read_flash(address, dest, FLASH_BLOCK_SIZE);
}
}
bool spi_flash_write_block(const uint8_t *data, uint32_t block) {
if (block < SPI_FLASH_PART1_START_BLOCK) {
// Fake writing below the flash partition.
return true;
} else {
// Non-MBR block, copy to cache
int32_t address = convert_block_to_flash_addr(block);
if (address == -1) {
// bad block number
return false;
}
// Wait for any previous writes to finish.
wait_for_flash_ready();
// Mask out the lower bits that designate the address within the sector.
uint32_t this_sector = address & (~(sector_size - 1));
uint8_t block_index = (address / FLASH_BLOCK_SIZE) % (sector_size / FLASH_BLOCK_SIZE);
uint8_t mask = 1 << (block_index);
// Flush the cache if we're moving onto a sector our we're writing the
// same block again.
if (current_sector != this_sector || (mask & dirty_mask) > 0) {
if (current_sector != NO_SECTOR_LOADED) {
spi_flash_flush_keep_cache(true);
}
if (ram_cache == NULL && !allocate_ram_cache()) {
erase_sector(SCRATCH_SECTOR);
wait_for_flash_ready();
}
current_sector = this_sector;
dirty_mask = 0;
}
dirty_mask |= mask;
// Copy the block to the appropriate cache.
if (ram_cache != NULL) {
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
for (int i = 0; i < pages_per_block; i++) {
memcpy(ram_cache[block_index * pages_per_block + i],
data + i * page_size,
page_size);
}
return true;
} else {
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FLASH_BLOCK_SIZE;
return write_flash(scratch_address, data, FLASH_BLOCK_SIZE);
}
}
}
mp_uint_t spi_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!spi_flash_read_block(dest + i * FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
mp_uint_t spi_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!spi_flash_write_block(src + i * FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
void mark_flash_cache_for_gc(void) {
if (current_sector != NO_SECTOR_LOADED && ram_cache != NULL) {
gc_mark_block(ram_cache);
uint8_t blocks_per_sector = sector_size / FLASH_BLOCK_SIZE;
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
for (uint8_t i = 0; i < blocks_per_sector; i++) {
for (uint8_t j = 0; j < pages_per_block; j++) {
gc_mark_block(ram_cache[i * pages_per_block + j]);
}
}
}
}
/******************************************************************************/
// MicroPython bindings
//
// Expose the flash as an object with the block protocol.
// there is a singleton Flash object
STATIC const mp_obj_base_t spi_flash_obj = {&spi_flash_type};
STATIC mp_obj_t spi_flash_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return singleton object
return (mp_obj_t)&spi_flash_obj;
}
STATIC mp_obj_t spi_flash_obj_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = spi_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_readblocks_obj, spi_flash_obj_readblocks);
STATIC mp_obj_t spi_flash_obj_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = spi_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_writeblocks_obj, spi_flash_obj_writeblocks);
STATIC mp_obj_t spi_flash_obj_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case BP_IOCTL_INIT: spi_flash_init(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_DEINIT: spi_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly
case BP_IOCTL_SYNC: spi_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(spi_flash_get_block_count());
case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(spi_flash_get_block_size());
default: return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_ioctl_obj, spi_flash_obj_ioctl);
STATIC const mp_map_elem_t spi_flash_obj_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_readblocks), (mp_obj_t)&spi_flash_obj_readblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_writeblocks), (mp_obj_t)&spi_flash_obj_writeblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ioctl), (mp_obj_t)&spi_flash_obj_ioctl_obj },
};
STATIC MP_DEFINE_CONST_DICT(spi_flash_obj_locals_dict, spi_flash_obj_locals_dict_table);
const mp_obj_type_t spi_flash_type = {
{ &mp_type_type },
.name = MP_QSTR_SPIFlash,
.make_new = spi_flash_obj_make_new,
.locals_dict = (mp_obj_t)&spi_flash_obj_locals_dict,
};
void flash_init_vfs(fs_user_mount_t *vfs) {
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL | FSUSER_USB_WRITEABLE;
vfs->readblocks[0] = (mp_obj_t)&spi_flash_obj_readblocks_obj;
vfs->readblocks[1] = (mp_obj_t)&spi_flash_obj;
vfs->readblocks[2] = (mp_obj_t)spi_flash_read_blocks; // native version
vfs->writeblocks[0] = (mp_obj_t)&spi_flash_obj_writeblocks_obj;
vfs->writeblocks[1] = (mp_obj_t)&spi_flash_obj;
vfs->writeblocks[2] = (mp_obj_t)spi_flash_write_blocks; // native version
vfs->u.ioctl[0] = (mp_obj_t)&spi_flash_obj_ioctl_obj;
vfs->u.ioctl[1] = (mp_obj_t)&spi_flash_obj;
}